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II. Abstract 

TNF is an inflammatory cytokine, vital for innate immune responses but also involved 

in pathological conditions including rheumatoid arthritis, psoriasis and inflammatory 

bowel disease. Assembly of the TNFR1-signalling complex (SC) is regulated and 

post-translational modifications play a crucial part in executing this regulation. 

The aim of this study was to characterise how LUBAC contributes to TNFR1-SC 

assembly, NF-B and MAPK pathway activation and prevention of cell death by 

influencing complex composition and ubiquitination. Using mass spectrometry 

OTULIN, CYLD and SPATA2 were identified as constitutive interaction partners of 

LUBAC. Interaction studies revealed that despite constitutive binding of OTULIN, 

SPATA2 and CYLD with the LUBAC component HOIP, only SPATA2 and CYLD are 

recruited to SCs. Strikingly, CYLD requires HOIP and SPATA2 for its recruitment to 

SCs, where CYLD counteracts LUBAC by cleaving ubiquitin chains. Consequently, 

CYLD enables TNF-induced cell death and supresses NF-B and MAPK activation in 

NOD2 signalling. Using a newly developed methodology TNFR1 and TRADD were 

identified as LUBAC substrates and absence of CYLD leads to increased 

ubiquitination of these proteins. In line with pro-survival functions of linear 

ubiquitination, depletion of either CYLD or SPATA2 protects cells from TNF-induced 

necroptosis. 

OTULIN, on the other hand, antagonises linear ubiquitination and regulates LUBAC 

in basal conditions by deubiquitinating its subunits and preventing aberrant linear 

ubiquitination. 

The protein A20 was found to require linear ubiquitin chains for its recruitment to the 

TNFR1-SC. A20, although negatively regulating NF-B signalling, is required to 

prevent TNF-induced cell death by stabilising linear ubiquitination of TNFR1-SC 

components. 

In summary, this study identified LUBAC to be central for CYLD and A20 recruitment 

to SCs and provides an explanation for the opposing role of CYLD and A20 in 

regulating TNF-mediated cell death despite their overlapping function in suppression 

of gene activatory pathways. 
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1 Introduction 

 

1.1 Ubiquitination 

Ubiquitin was discovered in 1975 as a ubiquitously expressed molecule (Ciehanover, 

Hod et al., 1978, Goldstein, Scheid et al., 1975, Hershko, Ciechanover et al., 1979). 

This 76 amino acid (aa) protein is conserved from yeast to human and involved in a 

vast amount of cellular functions (Hershko & Ciechanover, 1998, Komander & Rape, 

2012). Ubiquitin is encoded by four different genes RPS27A, UBA52, UBB and UBC. 

UBB and UBC encode for ubiquitin repeats that form a linear ubiquitin chain (Wiborg, 

Pedersen et al., 1985). Ubiquitin expressed from RPS27A and UBA52 is fused with 

the ribosomal protein S27a or L40, respectively, and is processed after translation 

(Baker & Board, 1991, Redman & Rechsteiner, 1989). These chains are readily 

disassembled by ubiquitin-specific proteases called deubiquitinases (DUBs) 

(Wilkinson, 1997). Ubiquitin is involved in regulation of cell signalling, protein 

degradation and recycling (Ciechanover, Finley et al., 1984, Glickman & 

Ciechanover, 2002, Hershko et al., 1979). As a posttranslational-modification, 

ubiquitin is conjugated to other molecules, a process known as ubiquitination. The 

conjugation of ubiquitin is usually made to a lysine residue (K) in the target molecule. 

In case of mono-ubiquitination, an isopeptide bond is formed between the N-terminus 

of the substrate’s lysine and the C-terminus of the glycine (Gly) residue of the 

incoming ubiquitin (Figure 1.1). In a second step, ubiquitin itself can be targeted for 

ubiquitination by linking a distal ubiquitin to the target protein-bound proximal 

ubiquitin. This step again creates an isopeptide bond. Sequential addition of ubiquitin 

molecules, linked via the same lysine residue by an isopeptide bond, creates a 

ubiquitin chain. Alternatively, the distal ubiquitin can be conjugated to the amino-

terminus of the proximal ubiquitin. This creates a peptide bond between the two 

ubiquitin moieties. This ‘head-to-tail’ linked chain is therefore referred to as a linear 

or M1 ubiquitin chain. 
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Figure 1.1: Creation of lysine- and M1-linked ubiquitin chains 

 

The ubiquitin chain is structurally defined by one of seven lysines (K6, K11, K27, K29, 

K33, K48, K63) or the amino-terminal (N-terminal) methionine (M1), which is used to 

create the linkage (Figure 1.2) (Clague & Urbé, 2010, Komander & Rape, 2012).  
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Figure 1.2: Ubiquitin structure and position of Lysine residues    

The N-terminal methionine is depicted in blue, Lysine residues are marked red. PDB: 1UBQ. 

 

The ubiquitination machinery is a hierarchy of ubiquitin-activating, -conjugating and -

ligating enzymes (Figure 1.3). First, ubiquitin needs to be activated by an E1 ubiquitin-

activating enzyme. In an adenosin triphosphat (ATP) dependent manner, the E1 

forms a thioester bond between a cysteine sulfhydryl group and the C-terminal 

carboxyl group of ubiquitin. The human genome encodes only two E1s. The activated 

ubiquitin can then be transferred from the E1 to the active site of one of 35 different 

E2 ubiquitin-conjugating enzymes. The conjugation of ubiquitin to the target protein 

is finally catalysed by E3 ubiquitin ligases, which are able to bind to the substrate and 

the E2 at the same time (Scheffner, Nuber et al., 1995). More than 300 E3s are 

known, which mediate substrate recognition and often define the chain type which is 

created. 
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Figure 1.3: Schematic of the ubiquitination system        

In an initial step, a thioester bond is formed between the cysteine sulfhydryl group of the E1 

ubiquitin-activating enzyme and the C-terminal carboxyl group of ubiquitin. The activated 

ubiquitin is then transferred from the E1 to the active site of an E2 ubiquitin-conjugating 

enzyme. The last reaction is catalysed by an E3 ubiquitin ligase. HECT E3s form an E3-

ubiquitin intermediate before transferring ubiquitin onto a substrate. RING E3s act as a 

scaffold by bringing E2 and substrate in close proximity, thus allowing a direct transfer of 

ubiquitin from the E2 to the substrate. 

 

1.1.1 E3-ligases 

Distinguished by their catalytic domain, there are two major classes of E3s. The 

homologous to the E6-AP carboxyl terminus (HECT) type E3s directly bind to ubiquitin 

in an intermediate reaction before transferring it onto the target protein (Figure 1.3) 

(Huang, Kinnucan et al., 1999, Verdecia, Joazeiro et al., 2003). Members of this 

family are characterised by their bilobal HECT-domain. Whilst the N-terminal lobe 

binds to the E2, the C-terminal lobe harbours the catalytic centre (Huibregtse, 

Scheffner et al., 1995). HECT E3s often contain additional protein interaction domains 

located at their N-terminus, whereas the HECT domain itself is usually located at the 

C-terminal end of the protein (Rotin & Kumar, 2009). HECT E3s mediate 

ubiquitination by forming a thioester-intermediate between ubiquitin and their catalytic 

cysteine. The loaded E3 then transfers ubiquitin to the amino-group of a target residue 

thus forming an isopeptide-bond (Figure 1.1) (Scheffner et al., 1995). Consequently, 

HECT E3s actively influence the linkage type of the resulting ubiquitin chain (Kim & 

Huibregtse, 2009). 

 

In contrast to HECT E3s, really interesting new gene (RING) type E3s catalyse the 

direct transfer of ubiquitin from the E2 to the substrate without forming an E3-
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ubiquitin-intermediate (Deshaies & Joazeiro, 2009). RING E3s function as 

ubiquitination adaptors by bringing E2 and substrate in close proximity (Zheng, Wang 

et al., 2000). This only allows for ubiquitination of certain residues which are in close 

proximity to the E2. Guiding substrates to the E2 may also involve domains other than 

the RING domain. Ubiquitin binding domains like zinc finger domains are often found 

in RING E3s (Li, Bengtson et al., 2008). Functionally, these domains may help to 

direct the E3 to signalling complexes and substrates. 

A subclass of the RING-family is characterised by the presence of two RING domains 

separated by an in-between-RING (IBR) domain. These RING1-IBR-RING2 or RBR-

domains are ~200aa long and characteristic for the RBR-family (Wenzel & Klevit, 

2012). Interestingly, the RING2 of the RBR-family members ARIH1 and parkin 

mediate ubiquitination by formation of a ubiquitin thioester intermediate (Wenzel, 

Lissounov et al., 2011). Consequently, RBR-members are functioning as RING/HECT 

hybrids. 

While many E3s readily ubiquitinate their substrates in vitro, their regulation in vivo is 

poorly understood. As constitutive ubiquitination of substrates is not always observed, 

ubiquitination in cells is likely regulated by signalling complex formation, which brings 

ligase and substrate in close proximity. Certain ubiquitin ligases also undergo auto-

ubiquitination following their activation, which can either promote their activity or lead 

to their proteasomal degradation (de Bie & Ciechanover, 2011). 

 

1.1.2 Ubiquitin linkage abundance 

The diversity of E3s is not only required for their substrate specificity, but also relates 

to their capability to conjugate different ubiquitin-chain linkages (Yau & Rape, 2016). 

However, atypical ubiquitin linkages (non-K48- or K63-linked chains) represent only 

a fraction of the possible linkage types (Table 1.1) (Dammer, Na et al., 2011). This 

shows that K48- and K63-linkages are prevailing in cell signalling processes. Other 

linkage types seemingly fulfil more specialised tasks. Accordingly, these chain types 

may have been underestimated in this study, as they might only be generated 

following a certain stimulus. In many cases, the specific function of a given linkage 

type is not known, also because proteins are usually modified with several linkage 

types simultaneously (Yau & Rape, 2016). Moreover, their creation, removal and 

function may depend on each other, thus making it difficult to attribute a certain 

function to a specific chain. The complexity and functional aspects of ubiquitination 

and its role in cell signalling will be discussed in the following chapters. 
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Table 1.1: Relative abundance of ubiquitin linkages (Dammer et al. 2011) 

Linkage type Relative abundance [%] 

K48 52 

K63 38 

K29 8 

K11 2 

K27, K33, K6, M1 <0.5 

 

1.1.3 Ubiquitin chain topology 

Formation of a ubiquitin chain, linked by one of the seven different lysine residues, 

results in a specific chain topology (Komander & Rape, 2012, Komander, Reyes-

Turcu et al., 2009b). As shown in figure 1.4, depending on the lysine that is used to 

create the ubiquitin chain, a different molecular surface is created between the 

individual ubiquitin-moieties. Of significant importance are hydrophobic patches 

surrounding Ile36 and Ile44 as these areas are directly involved in binding of ubiquitin 

to other proteins. Importantly, the relative orientation of these patches within the 

ubiquitin chain is specific for each linkage type (Figure 1.4). Additionally, the linkage 

type defines the spatial conformation of the ubiquitin chain. K63-linked ubiquitin 

chains for instance adopt a straight and open conformation. K6-, K11- and K48-linked 

ubiquitin chains adopt a compact conformation. K48-linked tetra ubiquitin chains were 

also found to interact intramolecularly via their Ile44 patches, thus forming a tightly 

packed structure (Eddins, Varadan et al., 2007). The M1 linkage is a special case 

from a chemical point of view, as the peptide bond between the two linked ubiquitin 

moieties results in a rather rigid bond, where the only contact point between the two 

molecules is the linkage-point. The reduced flexibility of the linear linkage provides a 

structurally defined surface for ubiquitin-binding molecules. Lysine-linkages in 

contrast are very mobile and can adopt a range of conformations (Akutsu, Dikic et al., 

2016, Komander et al., 2009b). Specifically, these chain types tolerate bending, which 

is required by certain ubiquitin binders, thus discerning it from the otherwise similar 

linear ubiquitin chain. Structural constrains can also have a negative effect on the 

ability of DUBs to cleave linear ubiquitin chains and several DUBs with otherwise 

broad specificity are ineffective in cleaving M1-linked chains (Ritorto, Ewan et al., 

2014). Structural analysis of a DUB or ubiquitin binding domain (UBD) in a complex 

with the respective ubiquitin chain is usually the only way to uncover the underlying 

mechanism of chain recognition (Komander, Clague et al., 2009a). An interesting 

example is binding of Associated molecule with the SH3 domain of STAM (AMSH) to 
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K63-linked via two insertion Ins-1 and Ins-2 within its catalytic domain. Ins-1 

specifically interacts with the distal ubiquitin while the proximal ubiquitin interacts with 

Ins-2 (Sato, Yoshikawa et al., 2008). Binding of AMSH stretches the K63-linkage 

which possibly facilitates cleavage of the chain (Lange, Lakomek et al., 2008). This 

mechanism of employing two distinct binding surfaces, combined with the flexibility of 

the K63-linkage, makes AMSH specific for these chains and unable to bind and 

cleave the structurally similar linear chain or any other linkage type (Ritorto et al., 

2014, Sato et al., 2008). 

 

Figure 1.4: The linkage type of a ubiquitin chain defines its topology     

(A) The C-terminus of the proximal ubiquitin can be attached to another protein. Conjugation 

of the C-terminus of a distal ubiquitin to one of the lysine residues or Met1 in the proximal 

ubiquitin creates a diubiquitin with a defined topology. The relative orientation of the 

hydrophobic patches surrounding Ile36 and Ile44 are unique between the linkage types.     

(B) Overview of the different possible ubiquitin linkages and their topologies. Models were 

created with PyMol and published structural data. PDB accession files: M1 2W9N, K6 2XK5, 

K11 2XEW, K27 5GOD, K29 4S22, K33 4XYZ, K48 3AUL, K63 3H7P. 

 

1.1.4 Ubiquitin binding proteins 

Because of the distinct binding surface each ubiquitin linkage type creates, binding 

platforms are formed which recruit molecules with linkage-specific UBDs. 20 different 
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types of UBDs are known to have evolved to interact with the different ubiquitin 

linkage types. Most UBDs utilise the hydrophobic patch surrounding Ile44 of ubiquitin 

for binding (Dikic, Wakatsuki et al., 2009). The relative orientation of this patch 

depends on the linkage type of the chain and therefore determines whether this patch 

can create an interface with the ubiquitin binding domain. Several UBDs use an 

helix for binding to the Ile44 patch (Hicke, Schubert et al., 2005). This includes e.g. 

ubiquitin-interacting motif (UIM), ubiquitin-associated (UBA), GGA and TOM (GAT) 

and ubiquitin binding in ABIN and NEMO (UBAN) (Dikic et al., 2009, Hurley, Lee et 

al., 2006). Another group of UBDs bind ubiquitin via zinc fingers. These are for 

example Npl4 zinc finger (NZF), A20-type zinc finger (ZnF_A20) and ubiquitin-binding 

ZnF (UBZ) (Husnjak & Dikic, 2012). In addition to the Ile44 patch, several UBDs, 

including RAB5 guanine nucleotide exchange factor (RABEX5), bind to a polar 

surface in ubiquitin around Asp58 (Lee, Tsai et al., 2006). The affinity of a single UBD 

for polyubiquitin can be, with a KD in the µM to mM range, rather low (Hjerpe, Aillet et 

al., 2009). However, some proteins harbour tandem UBDs or several UBDs across 

the protein. This increases the avidity of the protein to polyubiquitin. Although many 

UBDs are structurally similar and present across a variety of proteins, they are 

involved in very different cellular functions and often do not show the same linkage 

specificity (Dikic et al., 2009, Komander & Rape, 2012). Highly specialised UBDs exist 

which can only bind to one chain type. Linkage-specific binding of proteins can also 

be sometimes explained by the presence of tandem repeats of UBDs (Hirano, 

Kawasaki et al., 2006a). In this scenario, two consecutive UBDs are restricted in their 

conformation which, in turn, requires a surface across at least two ubiquitin-moieties 

which mediates specific binding to the UBDs in a linkage-specific manner. Such an 

example can be found in the DUB ataxin-3 which is involved in protein homeostasis 

by degradation of misfolded proteins. The tandem UIMs in ataxin-3 are separated by 

a short linker region that dictates specific binding to K48-linked chains. Interestingly, 

perturbation of this linker region can switch the linkage preference from K48- to K63-

specific (Song, Zhou et al., 2010). 

Nuclear magnetic resonance (NMR) studies of ubiquitin chains, complexed with 

different UBDs, revealed that the conformation each linkage-types adopts is variable 

and dependent on the UBD that it binds to (Komander & Rape, 2012, Komander et 

al., 2009b, Lange et al., 2008). Molecular discrimination of the different ubiquitin 

linkages is especially important for establishing a physiological function for each chain 

type. However, also monoubiquitination has specific functions. The endosomal-

sorting complex required for transport (ESCRT) utilises UBD-containing proteins to 
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bind to ubiquitinated cargo which is then deposited in multivesicular bodies (MVBs) 

(Hirano et al., 2006a, Hirano, Suzuki et al., 2006b, Katzmann, Babst et al., 2001). In 

this context, mono-ubiquitination of cell surface receptors was identified to mediate 

their internalisation and lysosomal degradation (Haglund, Di Fiore et al., 2003). Mono-

ubiquitination can also mediate proteasomal degradation. For example, the nuclear 

factor kappa B (NF-B) precursor p105 undergoes partial proteasomal processing to 

form a p50 fragment. This process is triggered by mono-ubiquitination events, rather 

than conjugation of a polyubiquitin chain (Kravtsova-Ivantsiv, Cohen et al., 2009). 

Ubiquitin binding domains can also be found in adaptor molecules or sometimes also 

in DUBs. The DUB A20, for instance, has seven zinc finger domains of which many 

were shown to bind to ubiquitin (Bosanac, Wertz et al., 2010, Evans, Ovaa et al., 

2004, Tokunaga, Nishimasu et al., 2012). In other cases, kinases and other regulatory 

proteins require the interaction with a ubiquitin binding protein for their recruitment to 

signalling complexes. An example are the NZFs in TAK1-binding protein 2 and 3 

(TAB2, TAB3) which preferentially bind to K63-linked ubiquitin chains (Kulathu, 

Akutsu et al., 2009, Ori, Kato et al., 2013). Their specificity is the result of 

simultaneous binding of the NZF to the hydrophobic Ile44 patch in the proximal and 

distal ubiquitin. TAB2/3 mediate the recruitment of TAK1 to signalling complexes 

(Kanayama, Seth et al., 2004, Ori et al., 2013). Another prominent example is 

radiation sensitivity abnormal 23 (Rad23) which has ~4-fold higher affinity for K48-

ubiquitin linkages over K63-chains (Chen & Madura, 2002). Functionally, this is linked 

to proteasomal degradation as Rad23, while binding to ubiquitin with its UBA domain, 

can bind to the 26S proteasome with its ubiquitin like (UBL) domain (Schauber, Chen 

et al., 1998). 

Overall, UBDs can specifically recognise binding platforms in signalling complexes 

which are created by various combinations of ubiquitin linkages. Hence, ubiquitin 

binders translate the ‘ubiquitin code’, which is generated by the different ubiquitin 

linkage types, and regulate signalling complex assembly and disassembly in a broad 

range of cell signalling pathways (Komander & Rape, 2012, Walczak, Iwai et al., 

2012). 

1.1.5 Linear ubiquitin chain specific UBDs 

With the discovery of the linear ubiquitin chain assembly complex (LUBAC) and its 

ability to generate M1-linked ubiquitin chains, several linear ubiquitin specific UBDs 

were identified (Haas, Emmerich et al., 2009, Hadian, Griesbach et al., 2011, Rahighi 

& Dikic, 2012, Rahighi, Ikeda et al., 2009, Sato, Fujita et al., 2011, Tokunaga et al., 
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2012, Walczak et al., 2012). Importantly, M1-linked chains are associated with NF-

B-activating pathways which usually employ proteins that can bind to ubiquitin. The 

rigid topology of the linear ubiquitin chain aligns the hydrophobic patches surrounding 

Ile44 in the proximal and Phe4 in the distal ubiquitin. This unique configuration is the 

basis for binding by several linear ubiquitin specific UBDs, as discussed below. 

NF-kappa-B essential modulator (NEMO) and A20-binding inhibitor of NF-kappa-B 

activation (ABIN) were shown to specifically bind to M1-linkages via their UBAN 

domain (Rahighi et al., 2009, Verhelst, Carpentier et al., 2012, Wagner, Carpentier et 

al., 2008). The UBAN domain binds with high specificity to linear ubiquitin chains and 

likely helps to guide these molecules to signalling complexes in a spatiotemporal 

manner (Lo, Lin et al., 2009, Rahighi et al., 2009) The specificity is the result of a 

UBAN coiled-coil dimer, which creates a long interface involving the Ile44 in the distal 

and the Phe4 patch in the proximal ubiquitin. The NZF of the LUBAC subunit HOIL-1 

also preferentially binds to linear ubiquitin chains (Sato et al., 2011). The specificity 

is achieved by simultaneous binding of the NZF to two distinct regions on the ubiquitin 

molecules. Similar to the UBAN dimer, the NZF core binds to the hydrophobic region 

surrounding Ile44 in the distal ubiquitin, while the -helical tail of the NZF binds to the 

hydrophobic patch around Phe4 in the proximal ubiquitin (Sato et al., 2011). Another 

example is OTU Deubiquitinase With Linear Linkage Specificity (OTULIN), a DUB 

which specifically binds and cleaves linear ubiquitin chains with remarkable 

specificity. The interface on both ubiquitin molecules covers 1,925 Å2 in total  involving 

the Ile44- on the distal and the Phe4-patch on the proximal ubiquitin (Keusekotten, 

Elliott et al., 2013). Importantly, the binding orientates the linear ubiquitin linkage 

perfectly near the catalytic centre of OTULIN, thus excluding non-specific cleavage 

of other linkage types. 

 

1.1.6 Proteasomal degradation by K48-ubiquitination 

One of the best understood ubiquitin modification is the K48-linked chain (Ciehanover 

et al., 1978, Hershko & Ciechanover, 1998). It is an essential mechanism for targeting 

proteins for proteasomal degradation (Chau, Tobias et al., 1989). K48-chain-

mediated degradation of proteins is involved in many cell functions including receptor 

signalling, cell cycle control and stress response (Glickman & Ciechanover, 2002). 

The topology of K48-linked chains differs from e.g. K63-linked chains by adopting a 

compact structure, which is markedly different regarding the position of exposed 

hydrophobic surfaces (Figure 1.4) (Varadan, Walker et al., 2002). It is not entirely 
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clear how K48-ubiquitination targets proteins to the proteasome. The 26S 

proteasome is composed of two large subunits; a regulatory and an active core unit 

(based on their sedimentation coefficient, also referred to as 19S and 20S, 

respectively), which are in turn composed of several functional modules (Finley, 

2009). Although the proteasome contains UBDs itself, shuttling of ubiquitinated 

substrates to the proteasome also requires substrate adaptors. Members of the RAD 

and DSK family and DDI1, are examples of adaptors that possess UBA domain(s) 

and a UBL) domain (Hartmann-Petersen & Gordon, 2004, Schauber et al., 1998). 

Binding of these adaptors to K48-chains via their UBA allows subsequent shuttling of 

the bound protein to the proteasome. The adaptors are in turn recognised by the 

proteasome via their UBL domain. In the course of proteasomal degradation, the 

substrate is first bound by the 19S subunit and ubiquitin chains are hydrolysed by the 

deubiquitinating module Poh1 (Yao & Cohen, 2002). Removal of substrate-

associated ubiquitin chains is vital for the process. The substrate protein is 

subsequently unfolded and guided to the entry of the catalytic core, where the protein 

is hydrolysed to short peptides (Finley, 2009). This process is also central for the 

generation of peptides that are loaded in the major histocompatibility complex (MHC). 

8-10 amino acid long peptides are bound by the MHC class I before translocating to 

the cell membrane (Goldberg, Cascio et al., 2002, Kisselev, Akopian et al., 1999). 

The source can be endogenous but also viral, bacterial or any other pathogen-derived 

protein. 

Perturbation of the proteasomal pathway has drastic effects on cell viability. Studies 

in yeast showed that the ability to create K48-chains is essential for survival as a 

Lys48 to Arg substitution mutant was not viable (Finley, Sadis et al., 1994, Spence, 

Sadis et al., 1995). However, ubiquitin that can only form K48-linked chains does not 

support viability in yeast, either (Xu, Duong et al., 2009b). Inhibition of the proteasome 

leads to a rapid accumulation of K48-ubiquitinated proteins (Kisselev & Goldberg, 

2001, Xu et al., 2009b). In the context of cell death, it was shown that inhibition of the 

proteasome leads to an increase of otherwise degraded pro-apoptotic factors, like 

p53 (Lopes, Erhardt et al., 1997). In turn, because the proteasome is required for 

gene activation by e.g. turn-over of ubiquitinated IB, anti-apoptotic proteins are not 

upregulated in response to death receptor-induced gene activation (Li & Dou, 2000, 

Ling, Liebes et al., 2002). Perturbation of this vital pathway can therefore be 

harnessed to modulate the cell’s response to different stimuli in cancer treatment as 

shown for the proteasomal inhibitor bortezomib (Velcade ®), which is approved for 
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treatment of multiple myeloma (Chauhan, Singh et al., 2008, Moreau, Richardson et 

al., 2012). 

 

1.1.7 Cell signalling and K63-ubiquitination 

In contrast to the strong association of K48-linked ubiquitin chains with proteasomal 

degradation, K63-linked chains are known to regulate non-degradative pathways 

(Chen & Sun, 2009). While mutation of K48 of ubiquitin is lethal in yeast, K63-

dependent ubiquitination is not crucial for survival (Spence et al., 1995). However, 

cells carrying this mutation have defects in DNA repair and are sensitive to DNA-

damaging agents (Spence et al., 1995). Indeed, an increased K63-ubiquitination of 

histones can be observed following DNA-damage (Al-Hakim, Escribano-Diaz et al., 

2010, Huen, Grant et al., 2007, Kolas, Chapman et al., 2007). This localised increase 

in K63-linked chains functions as a recruiting platform for DNA-repair complexes (Al-

Hakim et al., 2010). While some of the involved E3s, including RING finger protein 8 

(RNF8) or Rnf168 harbour a ubiquitin binding domain, breast cancer 1 (BRCA1) 

requires an adaptor, Rap80, for its recruitment to the site of DNA damage (Al-Hakim 

et al., 2010, Kim, Chen et al., 2007a, Stewart, Panier et al., 2009). The specificity of 

Rap80 for K63-linkages is the result of simultaneous binding of two UIMs to the Ile44 

patch (Sato, Yoshikawa et al., 2009). K48-chains cannot adopt the same orientation 

and are hence not recognised by Rap80 (Sato et al., 2009). 

Following these early discoveries of atypical chain function, K63-linked ubiquitin 

chains were also found to be involved in the regulation of cell signalling pathways. A 

ubiquitin replacement strategy was used to evaluate the importance of K63-linked 

ubiquitin for TNF- and Interleukin-1 (IL-1)-signalling (Xu, Skaug et al., 2009a). In this 

approach, endogenous ubiquitin was knocked-down using short hairpin RNA 

(shRNA) and simultaneously replaced by expressing K63R ubiquitin. Surprisingly, 

TNF- and IL-1-signalling were differentially affected. Whilst TNF-induced NF-B-

signalling was largely normal in the cells expressing K63R ubiquitin, it was abrogated 

in IL-1 signalling (Xu et al., 2009a). This finding was supported by depletion of Ubc13, 

an E2 that is strongly associated with K63-ubiquitination (Wen, Wang et al., 2014), 

which abrogated IL-1- but not TNF-mediated NF-B activation (Xu et al., 2009a). 

This demonstrates that ubiquitin linkages can play redundant roles in certain 

signalling pathways, while their presence is required in others. In cytokine signalling, 

K63-linkages supposedly function as recruitment platforms for protein complexes 

required for gene activation (Ea, Deng et al., 2006, Kanayama et al., 2004, Tao, 
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Scacheri et al., 2009). This includes the TAB/ TGF--activated kinase 1 (TAB/TAK) 

complex and the NEMO/ inhibitor of B kinase (NEMO/IKK) complex. Both complexes 

contain at least one factor that possesses ubiquitin binding capability (Ori et al., 2013, 

Rahighi et al., 2009). Seemingly, K63-linked chains make up most of the non-

degradative ubiquitin chains in cells, suggesting that they represent a universal 

protein modification that can be utilised by many ubiquitin binding and modulating 

factors. Interestingly, K63-linked ubiquitin chains seem to be targeted for 

ubiquitination themselves. In this scenario, K63-linked chains may function as the 

“stem” for a branched ubiquitin chain (Figure 1.5). Additionally, the initial chain may 

also be extended with a different chain type to form a mixed chain (Figure 1.5). In 

many receptor signalling pathways, K63-linked chains are created by E3s of the TNF-

receptor associated factor (TRAF)- family or cellular inhibitor of apoptosis protein 1/2 

(cIAP1/2). Members of one or both classes are found in TNF, IL-1 and several innate 

immune receptors (Wajant, Henkler et al., 2001). In summary, K63-linked chains are 

debatably the most versatile non-degradative chain type that is associated with 

almost every signalling pathway involving polyubiquitination. 

 

 

Figure 1.5: Model of different ubiquitin chain architectures 

 

1.1.8 Branched ubiquitin chains 

The existence of branched ubiquitin chains was previously suggested for Ring1B-

mediated ubiquitination. Ring1B is a member of the polycomb group which was found 

to require K6-, K27-, and K48-linkages to be present on the same ubiquitin molecule 

(Ben-Saadon, Zaaroor et al., 2006). Later, CHIP, MuRF1 and Mdm2, in combination 

with the E2 UbcH5, were shown to generate forked ubiquitin chains composed of all 

possible lysine linkages, but mainly K11- ,K48- and K63-branched chains (Kim, Kim 

et al., 2007b). Similarly, in IL-1 and other innate immune signalling pathways, 
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treatment of ubiquitinated proteins with a K63-specific DUB, AMSH, does not only 

lead to the removal of K63-chains, but also releases linear ubiquitin chains which 

have been attached to these proteins. Because of the linkage-specificity of AMSH, it 

can be assumed that linear ubiquitin chains were attached on top of K63-linked chains 

(Emmerich, Bakshi et al., 2016, Emmerich, Ordureau et al., 2013). Whether the linear 

chains were part of a branched or mixed chain remains to be seen. Though the list of 

proteins containing branched or mixed ubiquitin chains has been increasing over the 

last decade, the function often remains elusive. One can envision a large diversity of 

chain configurations i.e. a mix of several linkage types branching off from another 

chain (Peng, Schwartz et al., 2003). These signalling platforms could potentially be 

removed completely from the target protein by a single DUB that can remove the most 

proximal chain, rather than removing the chains individually by different DUBs. 

A functional relevance for branched ubiquitin chains was shown for the anaphase-

promoting complex (APC/C), which conjugates ubiquitin chains which contain K11-

linked branches. Notably, K11-branched chains were recognised better by the 

proteasome and substrates degraded more efficiently (Meyer & Rape, 2014). K11 

chain synthesis can be mediated by the E2 UBE2S. Depletion of UBE2S led to 

reduced K11-ubiquitination of anaphase substrates resulting in their stabilisation 

despite abundant K48-ubiquitination (Min, Mevissen et al., 2015). In contrast to the 

theory that branched chains promote proteasomal degradation, Kim et al. found that, 

whilst troponin I ubiquitinated with either K48- or K63-chains was rapidly degraded by 

the 26S proteasome, degradation was drastically diminished when branched chains 

were conjugated (Kim et al., 2007b). This suggests that branching of ubiquitin chains 

can also protect proteins from proteasomal degradation. 

Ultimately, the functional relevance of a ubiquitin chain depends on ubiquitin binders 

translating the signal context specifically, which results in different signalling 

outcomes. Branching of ubiquitin chains could allow for binding of two ubiquitin 

binding proteins with different linkage specificity, thus bringing them in close 

proximity. Also, mixed chains could increase the avidity of proteins that contain 

multiple UBDs with mixed specificity. On the other hand, a branched chain may 

obstruct potential binding sites for DUBs or UBDs. The complex nature of ubiquitin 

chain architecture, especially in vivo, makes it difficult to predict the biological function 

of a ubiquitin chain based on its mere presence on a protein. 
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1.2 Deubiquitination 

Disassembly of ubiquitin chains and removal of ubiquitin which is conjugated to other 

proteins is mediated by DUBs. These proteases are specific in cleaving polyubiquitin 

linkages by hydrolysing the peptide and/or isopeptide bonds linking these chains 

(Nijman, Luna-Vargas et al., 2005). DUBs can be divided in two classes: cysteine- 

and metallo-proteases. Cysteine proteases comprise the large class of ubiquitin-

specific proteases (USPs), ovarian tumour proteases (OTU), the Machado-Josephin 

disease proteases (MJDs) and the C-terminal hydrolases (UCHs). Metalloproteases 

are characterised by their JAB1/MPN/Mov34 metalloenzyme (JAMM) domain 

(Komander et al., 2009a). The human genome encodes more than 90 DUBs, 

suggesting a role in various signalling pathways. In addition to eukaryotic DUBs, 

some viruses and bacteria express DUBs that circumvent host defence mechanisms. 

As viruses and bacteria do not contain a ubiquitin system, these DUBs represent an 

adaptation to the host defence in order to increase their virulence (Edelmann & 

Kessler, 2008). For example, Yersinia species, a Gram-negative pathogen in the 

family of Enterobacteriaceae, express the deubiquitinase/deSUMOylase YopJ. This 

virulence factor was reported to inhibit NF-B and MAPK signalling by removing K63-

linked ubiquitin chains from TRAF2/3/6 and IB thereby promoting intracellular 

survival of Yersinia sp. (Orth, Xu et al., 2000, Sweet, Conlon et al., 2007, Zhou, 

Monack et al., 2005). 

Many DUBs are general regulators of the ubiquitin system. This includes processing 

of newly translated linear ubiquitin chains by e.g. USP5 which specifically recognises 

the free C-terminus of the ubiquitin chain and cleaves it (Reyes-Turcu, Shanks et al., 

2008). This is necessary to generate mono-ubiquitin which can then be used by the 

ubiquitination system to create different linkage types. The precise function of many 

DUBs is not clear. Generally, the function of DUBs is the termination of ubiquitin 

chain-dependent signalling events. However, this can also lead to activation of a 

certain response, as removal of degradative chains can stabilise a protein, thus 

allowing it to function. The transient interaction of DUBs with their substrates, as 

DUBs may not be part of the signalling complex directly, makes it difficult to study 

their function. The deubiquitinase DUBA is a negative regulator of IL-17A production 

in T cells. In resting cells, DUBA is ubiquitinated by the E3 UBR5, which leads to its 

proteasomal degradation (Rutz, Kayagaki et al., 2015). However, DUBA in turn can 

deubiquitinate UBR5 which protects it from proteasomal degradation. Activation by 

the T cell receptor causes DUBA to accumulate, possibly by inhibiting UBR5, which 

in turn leads to accumulation of UBR5. The vast increase of UBR5 allows it to inhibit 
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RORt by targeting it for proteasomal degradation. This example shows that 

ubiquitination and deubiquitination are balanced by very dynamic processes, which 

can be shifted very quickly to either side in to evoke a signalling response. Because 

DUBs are not necessarily recruited to ubiquitin directly, many DUBs rely on additional 

protein interactions for their recruitment to signalling complexes. This also prevents 

random recruitment of DUBs to every ubiquitin-containing complex. DUBs are often 

functionally linked to an E3. The BRCC3 BRCA1/BRCA2 complex is an example of a 

close association of E3 and deubiquitinase. These E3s regulate DNA damage 

response, partially by utilising ubiquitination (Wu, Koike et al., 2008). In vitro analysis 

suggests that BRCA1 can create K48- and K63-linked ubiquitin chains (Christensen, 

Brzovic et al., 2007). K63-ubiquitin chains seem to function as a recruitment platform 

signal, whereas K48-linked chains are naturally associated with proteasomal 

degradation. The DUB BRCC3 has exclusive specificity for cleaving K63-linked 

ubiquitin chains. Therefore, as part of the BRCA1/BRCA2 complex, BRCC3 functions 

as a negative regulator of the DNA-repair complex by removing the recruitment 

platform. 

It is noteworthy that most DUBs show no obvious specificity towards ubiquitin chain 

linkage types in vitro (Ritorto et al., 2014). This brings up the question how non-

specific deubiquitinases are targeted towards certain substrates but not others. One 

possibility of targeting DUBs to specific chains or substrates is achieved by locking 

the DUB in a specific place of the signalling complex. DUBs can be bound to other 

proteins which function as adaptors for their recruitment into signalling complexes. 

This restricts the ability of the DUB to engage targets which are too far away from 

their anchorage point. In addition, some DUBs have a restricted sub-cellular 

localisation. USP30, for example, is associated with the mitochondrial outer 

membrane and contributes to the maintenance of mitochondrial morphology 

(Nakamura & Hirose, 2008). 

 

 

1.2.1 Regulation of DUBs 

Subcellular localisation is however only one way of regulating DUB specificity. 

Ubiquitin chain topology itself can also directly affected ubiquitin binding and cleavage 

by the DUB. Structural analysis of DUBs upon their binding to ubiquitin revealed a 

conformational shift in the catalytic centre (Avvakumov, Walker et al., 2006, Johnston, 
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Riddle et al., 1999, Komander & Barford, 2008). This substrate-assisted catalysis 

prevents the DUB from arbitrarily cleaving Gly-Gly isopetide bonds in non-ubiquitin 

targets. Thus, only binding to the correct linkage type will activate the DUB and allow 

it to hydrolyse the chain. In addition, many DUBs are phosphorylated 

(http://www.phosphosite.org) on tyrosine, serine and threonine residues. These 

modifications likely regulate DUB function and activity, however, only few of these 

phosphorylation events are understood. It was, for instance, reported that Akt 

activates USP14 by phosphorylation (Xu, Shan et al., 2015). Since USP14 can cleave 

K48-linked ubiquitin chains, its phosphorylation could slow down protein degradation 

and may promote growth factor induced signalling. 

 

1.2.2 Mode of chain cleavage 

Hydrolysis of a ubiquitin chain can occur at internal linkage points (endo) or starting 

from the most distal ubiquitin (exo). Exo-DUBs, like the 26S proteasome-associated 

USP14, need access to the distal ubiquitin and start hydrolysing the chain 

sequentially towards the proximal ubiquitin that is conjugated to the protein (Hu, Li et 

al., 2005). In contrast, the endo-DUB AMSH-LP can initiate cleavage of the chain only 

at a linkage point between two ubiquitin molecules, which can, however, occur at any 

position of the chain (Sato et al., 2008). Another specialised DUB is USP5/IsoT which 

can only hydrolyse ubiquitin chains starting at the C-terminus. Because the C-

terminus of polyubiquitin is used for the conjugation to other proteins, USP5/IsoT can 

only cleave unattached, free ubiquitin chains. These are important functional 

limitations, as they determine how each class of DUBs is affected by the chain 

topology and organisation. In the following section, three DUBs (i.e. CYLD, OTULIN 

and A20) involved in the regulation of TNFR1-signalling will be discussed in more 

detail. 
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1.2.3 CYLD 

The tumour suppressor Familial Cylindromatosis Protein (CYLD) was first identified 

as the causative gene in patients suffering from familial cylindromatosis (Biggs, 

Wooster et al., 1995, Bignell, Warren et al., 2000). The disease is known for the large 

benign tumours that occur mainly around the head region but can manifest in any 

haired skin area. Patients usually carry a heterozygous germline mutation of the 

CYLD gene. Causative for the disease, however, is the deletion of the wild type (WT) 

allele in the tumours (Bignell et al., 2000). The name cylindromatosis originates from 

the characteristically cylindrical growth of the tumour tissue: the tumour centre 

contains large cells, while basaloid cells dominate towards the periphery and show a 

characteristic jigsaw-like pattern. Mutations of the CYLD gene in these patients reside 

mostly in the enzymatically active USP domain (Figure 1.6). Full deficiency in CYLD 

in mice does not lead to spontaneous development of tumours or any other overt 

phenotype. However, these mice are more susceptible to chemically and DSS-

induced colitis-associated tumorigenesis (Massoumi, Chmielarska et al., 2006, 

Zhang, Stirling et al., 2006). In contrast, mice expressing exon 9 truncated CYLD, 

which truncates the USP domain and abolishes its enzymatic activity, die shortly after 

birth due to lung failure (Trompouki, Tsagaratou et al., 2009). Liver-specific deletion 

of CYLD exon 9 leads to fibrosis, apoptosis of hepatocytes and development of 

hepatocellular carcinoma, which is completely prevented by deletion of TNFR1 

(Nikolaou, Tsagaratou et al., 2012). Lastly, intestinal epithelial cell (IEC)-specific 

deletion of Fas-associated protein with a death domain (FADD) that leads to colitis 

and epithelial cell necrosis is largely rescued by concomitant ablation of CYLD activity 

in IECs (Welz, Wullaert et al., 2011). Taken together, data obtained from in vivo 

experiments suggests that CYLD promotes e.g. TNF-induced cell death but is also 

required to maintain tissue homeostasis and to prevent tumour development. 

 

 

Figure 1.6: Schematic representation of CYLD       

CG CAP-Gly, USP Ubiquitin specific protease domain, Bbox B-box-type zinc finger domain 

 

Functionally, CYLD was identified as deubiquitinase of the USP-family. Initial studies 

found CYLD to be involved in the regulation of TNF-signalling (Brummelkamp, Nijman 
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et al., 2003, Kovalenko, Chable-Bessia et al., 2003). In addition to the C-terminal USP 

domain, CYLD has three cytoskeleton-associated protein-glycine conserved (CAP-

Gly) domains that are involved in cytoskeleton-associated transport of vesicles and 

other cell organelles (Figure 1.6) (Li, Finley et al., 2002). These domains were also 

suggested to mediate the interaction with NEMO and TRAF2 (Kovalenko et al., 2003, 

Saito, Kigawa et al., 2004). Within the USP domain sits a B-box-type zinc finger 

domain (Bbox) with largely unknown function. The Bbox was shown to be dispensable 

for CYLD activity in vitro but was suggested to promote cytoplasmic localisation 

(Komander, Lord et al., 2008). As Bbox domains often mediate protein-protein 

interactions, it is likely that CYLD binds to other proteins via this domain. Despite 

reported protein interactions of CYLD, the mechanism by which CYLD is recruited to 

signalling complexes is unknown. 

Like its recruitment, the physiological function of CYLD remains enigmatic. Early 

experiments utilised overexpression models of CYLD and concluded that CYLD 

functions as an inhibitor of gene-activation (Kovalenko et al., 2003, Trompouki, 

Hatzivassiliou et al., 2003). In contrast, others reported no or only mild effects of 

CYLD-deficiency on cytokine-induced gene activation (Moquin, McQuade et al., 

2013, Reiley, Zhang et al., 2006, Zhang et al., 2006). Apart from gene activation, 

CYLD regulates induction of cell death, as CYLD overexpression sensitises cells to 

TNF-induced cell death and its depletion by RNA interference (RNAi), or gene 

knockout provides protection against the cytotoxic effect of TNF (Hitomi, 

Christofferson et al., 2008, Moquin et al., 2013, O'Donnell, Perez-Jimenez et al., 

2011). 

Once recruited to signalling complexes, CYLD is thought to remove ubiquitin chains 

from its target proteins including TRAF2, TRAF6, NEMO and Receptor-interacting 

serine/threonine-protein kinase 1 (RIP1) (Brummelkamp et al., 2003, Kovalenko et 

al., 2003, Moquin et al., 2013). Removal of polyubiquitin by CYLD could lead to the 

destabilisation of the protein complex, thus abrogating signalling. CYLD is also 

regulated by post-translational modifications. In NF-B signalling, CYLD is rapidly 

phosphorylated. Contradicting reports regarding the inhibitory/activating role of this 

modification exist (Hutti, Shen et al., 2009, Reiley, Zhang et al., 2005). One study 

suggested phosphorylation of CYLD at S418 to be mediated by the IKK-complex and 

was reported to inhibit TRAF2 deubiquitination by CYLD (Reiley et al., 2005). In a 

screen for IKK substrates, CYLD was identified as a target for phosphorylation and 

the authors concluded that S418 phosphorylation decreases CYLD activity (Hutti et 
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al., 2009). CYLD is also a substrate of Caspase-8 and cleavage at position D215 is 

thought to inactivate CYLD (O’Donnell, Perez-Jimenez et al., 2011). In accord with 

the cell death promoting function of CYLD, prevention of this cleavage by mutation 

(D215N) leads to increased susceptibility towards TNF-induced cell death (O’Donnell 

et al., 2011). 

 

1.2.4 A20 

TNF can induce the expression of the deubiquitinase TNF-induced protein 3 

(TNFAIP3). This protein, also called A20, was proposed to have a dual role as a 

deubiquitinase and E3 ligase (Wertz, O'Rourke et al., 2004). The OTU domain of A20 

was shown to cleave K48-ubiquitin chains in vitro (Ritorto et al., 2014). Interestingly, 

following phosphorylation at Ser381, presumably by IKK, A20 is also capable of 

cleaving K63-ubiquitin chains (Wertz, Newton et al., 2015). A20 is best known for its 

proposed function in shutting down TNF-induced gene activation, as part of a 

negative feedback loop (Boone, Turer et al., 2004, Wertz et al., 2004). In line with this 

hypothesis, A20 efficiently inhibits gene activation emanating from different receptors 

including TNFR1, Toll-like receptor 4 (TLR4), CD40 and NODs (Boone et al., 2004, 

Chu, Vahl et al., 2011, Hitotsumatsu, Ahmad et al., 2008, Tokunaga et al., 2012, 

Turer, Tavares et al., 2008, Wertz et al., 2004). Rising concentrations of A20 are 

supposedly responsible for the deubiquitination of RIP1, whilst simultaneously 

mediating K48-ubiquitination of RIP1 which, in turn, targets RIP1 for proteasomal 

degradation (Wertz et al., 2004). This could lead to disassembly of the signalling 

platform and shutdown of gene activation. A20’s N-terminal OTU-domain is followed 

by seven zinc finger (ZF) motifs, some of which are able to bind ubiquitin chains 

(Figure 1.7) (Bosanac et al., 2010, Lu, Onizawa et al., 2013, Tokunaga et al., 2012). 

 

 

Figure 1.7: Schematic representation of A20       

OTU Ovarian tumour domain, ZF Zinc finger 

 

ZF4 was shown to bind to K63-linked ubiquitin chains and is required for efficient 

repression of NF-B (Bosanac et al., 2010). Peculiarly, ZF4 was also suggested to 
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be responsible for the E3 ligase function (Wertz et al., 2004). This mode of action 

seems, however, unlikely as the in vivo importance in mice of both the OTU- and ZF4-

domain is questionable. Indeed, complete deletion of A20 is causative for severe 

tissue inflammation, cachexia and perinatal death, which is MyD88-dependent (Lee, 

Boone et al., 2000, Turer et al., 2008). Co-deletion of TNFR1 does not ameliorate the 

phenotype (Boone et al., 2004). Reduced expression of A20 or defective function 

caused by polymorphisms in TNFAIP3 found in humans leads to increased 

susceptibility to autoimmunity (Adrianto, Wen et al., 2011, Zhou, Wang et al., 2016, 

Zhu, Wang et al., 2015). Coming back to the importance of the OTU- and ZF4-

domain, an inactivating point mutation of the catalytic cysteine within the OTU domain 

(C103A) or disruption of the ZF4 folding (C609A, C613A) in mice does not lead to a 

spontaneous inflammatory phenotype (Lu et al., 2013). However, these mice perform 

worse in models of acute and chronic inflammation but do not phenocopy full 

deficiency in A20 (Lu et al., 2013, Wertz et al., 2015). These findings raise the 

question which domain of A20 is responsible for protection from perinatal lethality. 

Domains other than the OTU and ZF4 are poorly characterised and no mice with 

different domain-specific alterations have been reported. However, ZF7 of A20 was 

found to suppress NF-B activation (Tokunaga et al., 2012, Verhelst et al., 2012, 

Yamaguchi, 2015). This domain binds specifically to linear ubiquitin chains and is 

required for overexpression-mediated suppression of NF-B (Tokunaga et al., 2012, 

Verhelst et al., 2012). This is an especially interesting observation as the ZFs are 

sufficient to prevent TNF-induced cell death but not a mutant carrying an inactivating 

point mutation of ZF7 (Yamaguchi, 2015). This points to a function of A20 which 

involves LUBAC and linear ubiquitin chains. 

 

1.2.5 OTULIN 

The unique function of LUBAC to create linear ubiquitin chains is counteracted by an 

equally specialised deubiquitinase called OTULIN (Keusekotten et al., 2013). 

OTULIN, also known as gumby, was identified in a mutagenesis screen as a gene 

that regulates the vascular development in mice (Rivkin, Almeida et al., 2013). Mice 

that have a point mutation in OTULIN, causing reduced deubiquitinase activity, die 

embryonically at day E12.5-E14 and are characterised by defective cranial 

vascularisation (Rivkin et al., 2013). 
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Figure 1.8: Schematic representation of OTULIN      

PIM PUB-interacting motif, OTU Ovarian tumour domain 

 

OTULIN has an exquisite specificity for linear ubiquitin chains and is unable to 

hydrolyse other linkage types. This preference is due to substrate-assisted catalysis: 

binding of OTULIN to linear ubiquitin leads to a conformational change in OTULIN 

that allows for repositioning of the catalytic triad into an active conformation 

(Keusekotten et al., 2013). OTULIN is constitutively associated with HOIP via a PUB-

interacting motif (PIM) which interacts with the PNGase/ubiquitin-associated (PUB) 

domain of HOIP (Figure 1.8) (Rivkin et al., 2013). In TNF-signalling OTULIN was 

shown to negatively regulate induction of NF-B as knockdown of OTULIN increased 

gene activation (Keusekotten et al., 2013). Interestingly, both reduction of OTULIN 

expression by RNAi and its overexpression sensitised HEK293 cells to TNF-induced 

cell death (Keusekotten et al., 2013), indicating that the level of linear ubiquitination 

must be tightly regulated to ensure homeostasis. 

Recently, three individuals with homozygous hypomorphic mutation in OTULIN were 

reported to develop severe autoinflammatory syndrome (Damgaard, Walker et al., 

2016). This condition termed OTULIN-related autoinflammatory syndrome (ORAS) is 

characterised by elevated cytokine production in myeloid cells caused by 

accumulation of linear ubiquitin chains resulting in autoactivation of these cells. 

Strikingly, the condition could be ameliorated in patients using antagonistic antibody 

therapy against TNF. 

 

1.3 Linear Ubiquitin Chain Assembly Complex (LUBAC) 

LUBAC is the only E3 ligase complex known to exclusively create M1-chains de novo. 

It consists of three subunits, Heme-oxidized IRP2 ubiquitin ligase 1 (HOIL-1, RBCK1), 

Shank-associated RH domain-interacting protein (Sharpin) and its main catalytic core 

unit HOIL-1 interacting protein (HOIP, RNF31) (Figure 1.9) (Gerlach, Cordier et al., 

2011, Haas et al., 2009, Ikeda, Deribe et al., 2011, Kirisako, Kamei et al., 2006, 

Tokunaga, Nakagawa et al., 2011). Though the stoichiometry of this complex is not 

entirely clear, experimental data suggest that LUBAC primarily exists as a tripartite 
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complex where HOIP is simultaneously bound to Sharpin and HOIL-1. Together, they 

form a large complex ~600KDa in size (Tokunaga et al., 2011). In the context of 

LUBAC, Sharpin and HOIL-1 function as regulatory subunits that also confer complex 

stability. Indeed, absence of any of the LUBAC components leads to a marked 

reduction of the protein level of the other two components respectively (Gerlach et 

al., 2011, Haas et al., 2009, Ikeda et al., 2011, Tokunaga et al., 2011). The recruitment 

of LUBAC to signalling complexes is mediated by binding to other ubiquitin chains 

and all three LUBAC components contain UBDs, accordingly. Both HOIL-1 and the 

RBR of HOIP are able to assemble linear ubiquitin chains in vitro (Stieglitz, Morris-

Davies et al., 2012). However, the activity of HOIL-1 is comparably low and its 

function in vivo has not been fully addressed. The C-terminal active core of HOIP and 

HOIL-1 belongs to the RBR E3s (as described in 1.1.1 E3-ligases). Like other RBR-

members, LUBAC conjugates ubiquitin chains in a HECT-like mechanism by loading 

the ubiquitin in its catalytic centre before directly conjugating it to its substrate 

(Stieglitz et al., 2012, Stieglitz, Rana et al., 2013). 

 

 

Figure 1.9: Schematic of LUBAC and the structure of its subunits    

HOIL-1 and Sharpin utilise the UBL domain for the interaction with the UBA of HOIP. The RBR 

domain can be found in both HOIP and HOIL-1, while Sharpin is catalytically inactive. CC 

coiled coil, IBR in-between-RING, RING really interesting gene domain, LDD Linear ubiquitin 

chain determining domain 

 

LUBAC has been suggested to regulate several different pathways including TNFR1-

, NOD2, IL-1R, CD40 TLR3, WNT and Retinoic acid-inducible gene I (RIG-I) 

(Damgaard, Nachbur et al., 2012, Emmerich et al., 2016, Haas et al., 2009, Inn, Gack 

et al., 2011, Rivkin et al., 2013, Sasaki, Sano et al., 2013) Overexpression of HOIP, 

together with HOIL-1 or Sharpin, but not alone, triggers production of linear ubiquitin 
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chains (Gerlach et al., 2011, Kirisako et al., 2006). Interestingly, this suffices to 

activate NF-B, indicating that linear chains can also function as a platform for gene 

activation, independently of any ligand (Gerlach et al., 2011). 

Absence of LUBAC from SCs reduces gene activation triggered by e.g. TNF and IL-

1 (Gerlach et al., 2011, Haas et al., 2009). It is therefore likely that linear 

ubiquitination promotes signalling complex formation which leads to enhanced 

activation of NF-B and MAPKs (Peltzer, Rieser et al., 2014). However, in WNT 

signalling, LUBAC was proposed to function as a negative regulator, based on 

LUBAC overexpression in a WNT reporter assay (Rivkin et al., 2013). However, the 

mechanism that would allow LUBAC to modulate this pathway was not clarified, 

leaving the question whether this is indeed a direct effect of LUBAC. Retinoic acid-

inducible gene 1 (RIG-I) signalling was also suggested to employ LUBAC as a 

negative regulator (Inn et al., 2011). LUBAC facilitates the ubiquitination of the 

ubiquitin ligase tripartite motif-containing protein 25 (TRIM25) and RIG-I, which leads 

to their subsequent proteasomal degradation (Inn et al., 2011). However, it is not clear 

whether TRIM25 or RIG-I are direct targets of LUBAC in vivo, or whether the 

ubiquitination of TRIM25 is secondary to the function of LUBAC in this pathway. 

In addition to the role of LUBAC in gene activation, deficiency in any LUBAC-

component sensitised various cell types to TNF-induced cell death (Gerlach et al., 

2011, Haas et al., 2009, Ikeda et al., 2011). It is not clear what causes this 

sensitisation to cell death in absence of LUBAC. In this context, factors that depend 

on LUBAC and linear ubiquitin chains for their recruitment or activity have not been 

fully characterised. It is therefore required to identify these factors first, to explain the 

functional importance of linear ubiquitin chains. 

 

1.3.1 HOIP 

As mentioned in the previous section, the enzymatic activity of LUBAC resides in 

HOIP (Kirisako et al., 2006). It comprises several domains, in addition to its 

enzymatically active domain, which support LUBAC function, regulation and 

assembly (Figure 1.9). In the N-terminal region, HOIP comprises a PNGase/ubiquitin-

associated (PUB) domain followed by a Bbox domain that shows sequence similarity 

to the Bbox present in CYLD (Komander et al., 2008). Additionally, HOIP has several 

ubiquitin binding domains (ZF, NZF1,2) which may contribute to efficient recruitment 

to signalling complexes. Mixed results exist regarding the domain that mediates the 
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interaction of HOIP with HOIL-1 and Sharpin. While it was reported that both HOIL-1 

and Sharpin bind to the UBA domain of HOIP via their UBL domain (Tokunaga et al., 

2011), others reported that the NZF2 of HOIP also mediates interaction with the UBL 

domain of Sharpin (Haas et al., 2009). 

Interestingly, HOIP is in an autoinhibited state, which is released upon binding to 

HOIL-1 or Sharpin. Alternatively, deletion of the UBA domain in HOIP, which is 

responsible for the inhibition of the RBR domain, renders HOIP active independently 

of HOIL-1 or Sharpin interaction. The autoinhibition of HOIP was also suggested to 

function as a regulatory mechanism for LUBAC activity. In TLR4-signalling, LUBAC 

is required to efficiently activate NF-B signalling (Bowman, Rodgers et al., 2015). 

Following LUBAC activation, HOIP is ubiquitinated at Lys1056 which leads to a 

conformational change in HOIP, blocking its enzymatic activity. Like the autoinhibition 

of HOIP, the ubiquitination-mediated inactivation utilises the N-terminus of HOIP to 

adopt the inhibitory conformation (Bowman et al., 2015). 

Deficiency of HOIP results in embryonic lethality at day E10.5, due to vascular defects 

caused by aberrant cell death in endothelial cells (Peltzer et al., 2014). The lethality 

and vascular defects could be corrected by concomitant deletion of TNF or TNFR1. 

However, these mice still die at day E14.5 and E17.5, respectively. The discrepancy 

between TNF and TNFR1 deletion could possibly be explained by a role of 

lymphotoxin- (LT-which can also bind to TNFR1 and induce cell death (Aggarwal, 

2003). Interestingly, HOIP/TNFR1-deficient mice had intact vascularisation and 

showed little signs of cell death (Peltzer et al., 2014). Nevertheless, these mice 

showed signs of severe heart defects, suggesting that HOIP is also required for 

cardiovascular development at late-gestation. 

HOIP-deficiency in humans was found to cause multiorgan autoinflammation, 

lymphangiectasia and combined immunodeficiency (Boisson, Laplantine et al., 2015). 

A hypomorphic Leu72 to Pro missense mutation in RNF31 was causative for 

destabilisation of HOIP and, consequently, HOIL-1 and Sharpin protein levels. 

Fibroblasts, isolated from the patient, showed impaired IL-1- and TNF-induced NF-

B activation (Boisson et al., 2015). In contrast, stimulation of monocytes with IL-1 

led to an increased production of IL-6. Patient-derived B-cells were unresponsive to 

CD40L stimulation and plasmablast differentiation was markedly lower. This suggests 

that LUBAC function may be different between cell types. 
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1.3.2 HOIL-1 

One of the regulatory cofactors of LUBAC is Haem-oxidized IRP2 ubiquitin ligase 1 

(HOIL-1), also known as RANBP2-Type And C3HC4-Type Zinc Finger Containing 1 

(RBCK1). HOIL-1 was first identified as an E3 that binds to oxidised Iron regulatory 

protein 2 (IRP2) (Yamanaka, Ishikawa et al., 2003). However, no additional studies 

have been conducted to date regarding a LUBAC-related function in that matter. Like 

HOIP, HOIL-1 contains a RBR domain at its C-terminus, a UBL domain and an NZF 

(Figure 1.9) (Haas et al., 2009, Tokunaga, Sakata et al., 2009). Its RBR, however, 

shows only weak activity in creating linear chains in vitro (Stieglitz et al., 2012). 

Overexpression of HOIP together with HOIL-1 can trigger activation of NF-B 

(Tokunaga et al., 2009). However, expression of HOIL-1 that lacks its RBR together 

with HOIP shows no sign of diminished activity (Tokunaga et al., 2009). Interestingly, 

HOIL-1 that lacks the UBL domain is also not able to activate HOIP-mediated 

generation of linear ubiquitin (Tokunaga et al., 2009). These results show that HOIP 

requires the interaction with HOIL-1 for its activation likely due to the release of its 

auto-inhibition and that the N-terminus of HOIL-1 is sufficient to do so (Stieglitz et al., 

2012). 

Deficiency in HOIL-1 was reported in patients that presented with chronic 

autoinflammation (Boisson, Laplantine et al., 2012). As expected from earlier in vitro 

data, loss of HOIL-1 function or expression resulted in reduced LUBAC stability and 

activity in these patients. Consequently, NF-B activation by IL-1 in patient-derived 

fibroblasts was reduced. Monocytes, however, were hyper-responsive to IL-1, 

showing that function and degree of LUBAC-mediated regulation of NF-B is cell 

type-dependent. Surprisingly, Tokunaga et al. showed that HOIL-1 deficiency in mice 

does not cause any overt phenotype. However, this HOIL-1 deficient mouse strain 

was engineered by deletion of exon 7 and 8, leaving a large portion of the N-terminus 

intact. It is therefore possible that the remaining portion, which includes the UBL 

domain, is still able to e.g. release the auto-inhibition of HOIP. Like HOIP, HOIL-1 is 

also target for ubiquitination. Western blot analysis indicates that a significant amount 

of HOIL-1 is modified with a mono-ubiquitin (Haas et al., 2009). Interestingly, this 

modification is dependent on HOIP and Sharpin as ablation of either abrogates this 

modification (Gerlach et al., 2011, Ikeda et al., 2011, Peltzer et al., 2014, Tokunaga 

et al., 2011). 

HOIL-1 was also described to regulate other pathways. In B- and T-cell receptor 

signalling, HOIL-1, but not HOIP or Sharpin, was shown to be a target of the 
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paracaspase MALT1 (Douanne, Gavard et al., 2016, Klein, Fung et al., 2015). 

Activation of the antigen receptors leads to activation of the canonical NF-B 

pathway, which also employs LUBAC, by the CARD11/BCL10/MALT1 (CBM) 

complex. Cleavage of HOIL-1 reduces LUBAC stability and activity thus promoting 

abrogation of gene activation. The CBM complex is therefore part of a negative 

feedback loop that, in a first step, activates NF-B triggered by the B- and T-cell 

receptors, but supports abrogation of the pathway by cleaving HOIL-1 (Elton, 

Carpentier et al., 2016). 

 

1.3.3 Sharpin 

Sharpin was initially reported to interact with members of the SH3 and multiple ankyrin 

repeat domains (SHANK) protein family (Lim, Sala et al., 2001). Sharpin shares some 

similarity with HOIL-1, as it also has a UBA domain followed by a NZF domain (Figure 

1.9). The UBL domain mediates the interaction of Sharpin with the UBA of HOIP 

(Tokunaga et al., 2011). Like HOIL-1, presence of Sharpin stabilises LUBAC (Gerlach 

et al., 2011) and enables full activity of HOIP (Stieglitz et al., 2012). Deficiency in 

Sharpin is causative for chronic proliferative dermatitis (cpdm) in mice (HogenEsch, 

Gijbels et al., 1993). In this mouse model, a single base pair deletion causes a frame 

shift leading to a premature stop codon in exon 1. Cpdm mice are characterised by 

hyperkeratosis, parakeratosis and immune infiltrates in the skin, causing severe skin 

inflammation and hair loss starting as early as 6 weeks after birth. Additionally, these 

mice have signs of arthritis, enlarged lymph nodes, splenomegaly, and lack payer’s 

patches in the ileum of the small intestine (Gijbels, Zurcher et al., 1996, HogenEsch, 

Janke et al., 1999). Consequently, these mice have abnormal B-cell development, 

overall lower serum and faecal IgG level and diminished immune response following 

antigenic challenge with Dinitrophenol- Keyhole limpet hemocyanin (DNP-KLH). The 

severity of the skin lesions is constantly progressing, which requires cpdm mice to be 

euthanised at the age of about 12 weeks. IL-4, IL-5, IL-13 and GM-CSF cytokines, 

indicative for a type 2 immune response, were found to be upregulated in these mice 

(HogenEsch, Torregrosa et al., 2001). This correlated with increased levels of 

eosinophil infiltrates in the skin. As IL-12 induces INF- production in T and NK cells, 

which supressed type 2 cytokine production, systemic treatment of Sharpin-deficient 

mice with recombinant IL-12 reduced clinical signs of dermatitis (HogenEsch et al., 

2001). The inflammasome is responsible for activation of numerous inflammatory 

cytokines including IL-1 and IL-18 (Lamkanfi & Dixit, 2014). This multi-protein 
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complex, which also contains Caspase-1 and Caspase-11, is an important part of the 

innate immunity system. In the context of Sharpin-deficiency, deletion of caspase-1 

and -11 in cpdm mice decreased levels of inflammatory cytokines and cell death 

leading to a substantial amelioration of the phenotype (Douglas, Champagne et al., 

2015). However, TNF is causative for the onset of the symptoms, as its genetic 

ablation completely prevents the disease (Gerlach et al., 2011). Moreover, co-

deletion of the crucial cell death components Caspase-8 and RIP3 delays the onset 

of cpdm (Rickard, Anderton et al., 2014a), a scenario in which gene activation is not 

affected. Similarly, skin-specific deletion of FADD and RIP3 prevents dermatitis in 

Sharpin-deficient mice (Kumari, Redouane et al., 2014). Thus, TNF-mediated cell 

death is responsible for the onset of the disease, rather than a dysfunction in TNF-

dependent gene activation. 

Conclusively, Sharpin, as component of LUBAC, forms part of the TNFR1-SC and 

absence of Sharpin leads to decreased TNF-induced gene activation and sensitises 

to TNF-induced cell death (Gerlach et al., 2011). Though Sharpin does not have any 

enzymatic activity on its own, MEFs derived from cpdm mice show reduced linear 

ubiquitination in response to TNF (Rickard et al., 2014a). 

 

1.4 NF-B pathway 

Receptor-mediated cell signalling is one of the cell’s most important ways to interact 

with their environment. In order to adapt and react to changes in the environment, 

cells are often required to produce additional proteins, which are induced by gene 

activation. Gene-activatory receptors function as detectors for various stimuli (e.g. 

cytokines, pathogens, or chemical substances) which subsequently relay the 

information through a signalling cascade to the respective effector molecules 

(Hayden & Ghosh, 2008). This usually leads to the activation of several transcription 

factors (Oeckinghaus, Hayden et al., 2011). Depending on the stimulus and the set 

of transcription factors which are triggered, the cell will start protein expression 

selectively (Zhou, Scoggin et al., 2003). One of these transcription factors is the 

nuclear factor kappa-light-chain-enhancer of activated B cells (NF-B). After its 

discovery in B cells, NF-B was identified as a member of a family of transcription 

factors which regulate gene activation in many cell types and in response to a large 

variety of stimuli (Sen & Baltimore, 1986a, Sen & Baltimore, 1986b). The NF-B family 

can be divided in two classes. Class I consists of the precursors p100 and p105 which 

can be processed to p52 and p50, respectively (Fan & Maniatis, 1991, Xiao, Fong et 
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al., 2004). Class II comprises Rel-family members RelA (also known as p65), RelB 

and cRel (Chen & Greene, 2004). All five members have an N-terminal Rel homology 

domain (RHD). The RHD is composed of two immunoglobulin-like structures which 

mediate homo- and hetero-dimerisation between the family members and binding to 

cognate B targets in the DNA (Chen & Greene, 2004). The function of the RHD is 

subject to posttranslational modifications including acetylation, phosphorylation and 

ubiquitination (Chen, Mu et al., 2002, Kiernan, Brès et al., 2003, Ryo, Suizu et al., 

2003, Zhong, SuYang et al., 1997). These alterations have been reported to change 

dimerization preferences and DNA-binding activity of the subunit both in a positive or 

negative manner. All members contain also a transcriptional activator domain (TAD). 

As p50 and p52 lack this domain, they require dimerisation with members of the Rel-

family to form a functional transcription factor (Hoffmann & Baltimore, 2006, 

Oeckinghaus et al., 2011). The complexity of NF-B signalling becomes evident when 

considering the different possible combinations of homo- and heterodimers. In total, 

12 combinations exist that can activate transcription. In addition, dimers which lack a 

TAD, but still bind to DNA, can potentially function as inhibitors, thus adding increased 

complexity to the system (Hoffmann & Baltimore, 2006). 

Members of the NF-B family are sequestered in the cytosol via binding of inhibitors 

of B (IBs) to the RHD. There are six known proteins in the IB-family: three typical 

members IB, IB, IB, and three atypical members IB, IB and Bcl-3 

(Baeuerle & Baltimore, 1988, Baeuerle & Baltimore, 1989, Fujita, Nolan et al., 1993). 

All members have characteristic Ankyrin repeats which bind to the RHD of NF-B 

members thus masking the nuclear localisation sequence (NLS) embedded in the 

RHD (Beg & Baldwin, 1993). An exception is Bcl-3, which superactivates p50 homo-

dimers (Fujita et al., 1993). For class II NF-B members to translocate to the nucleus, 

IB must be removed. This form of NF-B activation is termed canonical NF-B 

signalling (Brown, Gerstberger et al., 1995). In contrast, p100 is activated through 

proteolytic cleavage, and is hence distinguished as non-canonical NF-B signalling 

(Xiao, Harhaj et al., 2001). 

 

1.4.1 Canonical NF-B signalling 

As described in the previous section, canonical activation of NF-B signalling requires 

the translocation of NF-B dimers to the nucleus, which is usually inhibited by IBs. 

In case of e.g. TNF, IL-1 and several damage-associated molecular patterns 
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(DAMPs) and pathogen associated molecular patterns (PAMPs), activation of these 

pathways leads to phosphorylation of IB kinases (IKKs) (Israël, 2010). These 

kinases, IKK and IKK are complexed with the regulatory subunit IKK/NEMO 

(Chen, Parent et al., 1996, DiDonato, Hayakawa et al., 1997, Yamaoka, Courtois et 

al., 1998). The phosphorylation of IKKs marks the first step in the signalling cascade 

of NF-B activation (Figure 1.10). The molecular basis for IKK activation is not fully 

understood, but strong evidence exists that TAK1 phosphorylates and activates IKK 

in a ubiquitin dependent manner (Wang, Deng et al., 2001). Alternatively, it was 

suggested that recruitment of NEMO to ubiquitinated proteins like RIP1 might lead to 

oligomerisation and therefore proximity-induced activation of IKK (Marienfeld, 

Palkowitsch et al., 2006, Zhou, Wertz et al., 2004). One of the hallmarks of NF-B 

activation is the phosphorylation and degradation of IB(Baeuerle & Baltimore, 

1988). Phosphorylation of IB on Ser32 and Ser36 by the IKKs triggers the 

ubiquitination of IB with K48-linked chains on lysine K21 and K22 by the -TRCP 

F-box-containing component of a Skp1-Cullin-F-box (SCF)-type E3 ubiquitin ligase 

complex (SCF-TrCP) (Spencer, Jiang et al., 1999, Winston, Strack et al., 1999, 

Yaron, Hatzubai et al., 1998). Subsequently, IB is degraded by the 26S-

proteasome, thus liberating the NF-B dimer (Brown et al., 1995, Chen, Hagler et al., 

1995). The degradation of IB is substantial and can lead to the complete 

disappearance of IB from the cytosol. Degradation of IBa unmasks the NLS in the 

NF-B dimer, which allows it to enter the nucleus to bind to its cognate DNA binding 

sites (Chen et al., 1995, Ganchi, Sun et al., 1992). Other IB members are degraded 

in a similar manner (Kanarek, London et al., 2010). Interestingly, the expression of 

several regulatory proteins is under the control of NF-B promotors (Figure 1.10). 

This includes CYLD, A20 and IB (Oeckinghaus et al., 2011). The upregulation of 

these factors creates a negative feedback-loop which facilitates the shutdown of NF-

B signalling (Hoesel & Schmid, 2013). Indeed, DUBs like CYLD and A20 can remove 

ubiquitin from signalling complex components thus inhibiting continuous IKK 

activation (Trompouki et al., 2003, Zhang, Kovalenko et al., 2000). Most importantly, 

the reoccurrence of IB restores the inhibition of NF-B by sequestering them in the 

cytosol. IB can also enter the nucleus, in order to displace NF-B from the DNA 

(Arenzana-Seisdedos, Turpin et al., 1997, Sun, Ganchi et al., 1993). Regulation of 

canonical NF-B activation and its termination is crucial to ensure correct gene 

transcription. This is because target genes can be roughly categorised based on the 

signal strength they require to be activated. This means that certain target genes will 
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be readily transcribed following a short impulse of NF-B activation, while other genes 

may require a more continuous signal to achieve sufficient protein expression (Tian, 

Nowak et al., 2005). Apart from the signalling duration, also the strength of the 

impulse, i.e. the amount of simultaneously activated NF-B, affects certain genes 

more than others (Nelson, Ihekwaba et al., 2004). 

Contradicting reports exist concerning the importance of either IKK for the activation 

of TNF or IL-1. While Li et al. showed that IKK is essential and sufficient for activation 

for NF-B activation by TNF and IL-1 (Li, Van Antwerp et al., 1999); others showed 

that IL-1 can activate NF-B also in the absence of IKK (Solt, Madge et al., 2007). 

The reason for this difference is not clear but it suggests that IKK and IKK do not 

have redundant roles in every pathway. Regardless of the stimulus, IKK was shown 

to be more important for the canonical activation, while IKK is essential for non-

canonical activation of NF-B. 

Mice deficient in IKK die between days E12.5-13.5 due to severe liver apoptosis (Li 

et al., 1999). Interestingly, the embryonic lethality of IKK-deficient mice could be 

rescued by concomitant deletion of TNFR1 but these animals still died within the first 

month post-birth (Li et al., 1999). In line, NEMO-deficient mice, which are completely 

defective in canonical NF-B activation induced by Lipopolysaccharide (LPS), TNF, 

IL-1 or Poly(I:C) also die between days E12.5-13.0 from severe liver damage due to 

apoptosis (Rudolph, Yeh et al., 2000). Death of these animals is likely the result of 

insufficient upregulation of anti-apoptotic factors in response to inflammatory and 

death-inducing ligands. 
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Figure 1.10: Comparison of canonical and non-canonical NF-B activation   

Canonical activation of NF-B relies on activation of IKK by TAK1. Once activated, IKK 

phosphorylates IkB which leads to its K48 ubiquitination and proteasomal degradation. 

Removal of IB unmasks the nuclear localisation sequence of the p65/p50 dimer which now 

can enter the nucleus and start transcription of its target genes.     

Non-canonical NF-B activation relies on activation of NIK. Under basal conditions, NIK is 

continuously ubiquitinated with K48 ubiquitin chains by cIAP1/2, leading to its proteasomal 

degradation. Certain signalling pathways like CD40 or TWEAK recruit and activate cIAP1/2, 

leading to their auto-ubiquitination and degradation. This can also be achieved by treatment 

with Smac mimetics. In absence of cIAPs, stabilised NIK phosphorylates IKK which in turn 

phosphorylates p100. Once activate, p100 is partially processed by the proteasome to give 

rise to a p52 fragment which, together with RelB, can enter the nucleus to drive gene 

transcription. 
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1.4.2 Non-canonical NF-B activation 

The signal for non-canonical NF-B activation can emanate from members of the 

TNFR-superfamily, including CD40 (Coope, Atkinson et al., 2002), B cell-activating 

factor receptor (BAFFR) (Claudio, Brown et al., 2002), receptor activator of NF-B 

(RANK) (Novack, Yin et al., 2003) and lymphotoxin  receptor (LTR) (Dejardin, Droin 

et al., 2002). Non-canonical NF-B signalling by p52/RelB was shown to be important 

for B cell survival and development of the lymphoid organs (Dejardin, 2006). 

Activation of this pathway involves cIAP1/2 and NF-B inducing kinase (NIK) (Figure 

1.10) (Xiao et al., 2001). In resting cells, NIK is subjected to continuous ubiquitination 

by an E3 complex consisting of TRAF2/3 and cIAP1/2 which leads its degradation 

(Vallabhapurapu, Matsuzawa et al., 2008, Zarnegar, Wang et al., 2008). Activation of 

any of the aforementioned receptors leads to the recruitment of TRAF family 

members and cIAP1/2 (Sun, 2011). Subsequently, cIAP1/2 ubiquitinate TRAF2/3 

and, depending on the stimulus, themselves, which leads to their degradation. 

Consequently, NIK protein levels will accumulate, allowing it to phosphorylate IKK. 

The non-canonical activation of NF-B relies entirely on the activity of NIK, 

establishing it as the key activator of this pathway (Sun, 2011). Activated IKK can 

then phosphorylate p100 at serine 866, 870, and possibly 872, which allows 

successive binding of the SCFTrCP (Liang, Zhang et al., 2006). This region is 

named NIK-responsive element and resembles the phosphorylation site of IBs. 

Mutation of SS866 and S870 in p100 completely abolishes its processing (Xiao et al., 

2001). Phosphorylated p100 is ubiquitinated by SCFTrCP at lysine K856 which is 

analogous to the for degradation responsible lysine in IB (Scherer, Brockman et 

al., 1995). Partial proteasomal processing of p100 generates a p52 fragment which, 

together with RelB, forms the active transcription factor (Figure 1.10). In contrast to 

canonical NF-B activation, IKK and IKK (NEMO) are dispensable for this step, 

while IKK is essential (Claudio et al., 2002, Dejardin et al., 2002). Seemingly, non-

canonical NF-B activation lacks the control of the IB family. However, p100 was 

shown to act as an inhibitor of RelB translocation to the nucleus and processing of 

p100 to p52 alleviates this repression (Solan, Miyoshi et al., 2002). Additionally, p100 

processing is strictly stimulation-dependent and even overexpression of p100 does 

not lead to significant generation of the p52 fragment (Xiao et al., 2001). This 

emphasises the importance of NIK/IKK activation and consequently the regulation 

of NIK stability by ubiquitination via cIAP1/2. Alterations of cIAPs are consequently 

associated with a deregulation of non-canonical NF-B signalling (Müller-Sienerth, 
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Dietz et al., 2011, Vince, Wong et al., 2007). SMAC-mimetics (SM)-induced depletion 

of cIAPs results in a stabilisation of NIK. Hence, while SMAC-mimetic treatment will 

block canonical NF-B activation by e.g. TNF, non-canonical NF-B activation will 

readily ensue. Since the non-canonical pathway requires degradation of TRAF and/or 

cIAPs first, and subsequent accumulation of NIK, gene activation occurs slower, but 

persists longer compared to canonical NF-B activation (Saitoh, Nakayama et al., 

2003). IKK does not only phosphorylate p100 but also NIK, thus triggering its 

proteolysis (Razani, Zarnegar et al., 2010). Over time, decreasing NIK levels and re-

emerging cIAP level will revert the non-canonical signalling to its basal condition. 

 

1.5 MAPKs 

Mitogen activated protein kinases (MAPKs) are among the most ancient kinase 

systems that function downstream of various extracellular signal receptors as hubs 

for signal transduction (Cargnello & Roux, 2011). The mechanisms and proteins 

involved are evolutionary well conserved in eukaryotic cells and involved in a variety 

of cellular processes like metabolism, cell division, motility, cell death, gene 

expression and survival. These kinases were first found to be activated by growth 

factors but later found to be activated by a large variety of cell signalling receptors 

(Widmann, Gibson et al., 1999). Members of this group can be divided in conventional 

and unconventional MAPKs. Conventional members are Extracellular signal 

regulated kinase 1/2/5 (ERK1/2/5), c-Jun N-terminal kinase 1/2 (JNK1/2) and p38 

(), which are characterised by their N-terminal Ser/Thr-kinase domain (Wada 

& Penninger, 2004). Unconventional MAPKs also have a Ser/Thr-kinase domain 

located at their N-terminus, but they have distinct additional features that do not 

comply with the composition of conventional MAPKs (Cargnello & Roux, 2011). 

Activation of conventional MAPKs is a hierarchical kinase cascade so that a MAPK is 

activated by a MAPK kinase (MAP2K or MKK), which, in turn, is activated by a 

MAPKK kinase (MAP3K) (Zhang & Liu, 2002). MAP3K are activated as a 

consequence of receptor stimulation and often involve interaction with members of 

the Ras/Rho pathway (Sahai, Olson et al., 2001). Examples of MAP3Ks are 

MAPK/ERK kinase kinase2/3 (MEKK2/3), rapidly accelerated fibrosarcoma 1 (Raf-1), 

tumor progression locus 2 (TPL-2) and TAK1. Activation of MAPKs by receptor 

members of the innate immune systems often involve TAK1 which phosphorylates 

MKK3, - 4, -6 and -7. Once activated, MKK3/6 activate p38 and MKK4/7 activate JNK 
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(Chang & Karin, 2001). Activation of TAK1 was shown to require ubiquitination 

mediated by e.g. TRAF2/6 (Wang et al., 2001). 

MAP2Ks are a protein family with seven members called MAPK/ERK kinases (MEKs) 

(Akinleye, Furqan et al., 2013). Through the sequential activation of these kinases, 

MAPKs are phosphorylated in a conserved Thr-X-Tyr motif located in the kinase 

domain to lock it in an active conformation. MAPKs have a restricted set of substrates 

as they require Ser or Thr to be followed by a Pro residue (Biondi & Nebreda, 2003, 

Lu, 2004). However, as this amino acid sequence is not uncommon, MAPKs have 

evolved a second mechanism for substrate recognition. Located within their kinase 

domain, conventional MAPKs have a charged so called CD-region and a hydrophobic 

docking groove which mediates interaction with a consensus docking motif (D-motif) 

found in their substrates but also in MEKs (Enslen & Davis, 2001, Rubinfeld, Hanoch 

et al., 1999, Tanoue, Adachi et al., 2000, Tanoue & Nishida, 2003). These targets are 

usually kinases themselves called MAPK activated protein kinases (MAPKAPKs) and 

hence diversify the signal further. Members of this family are mitogen- and stress-

activated kinases (MSKs), the p90 ribosomal S6 kinases (RSKs), MAPK-activated 

protein kinase 2/3 (MK2/3), and MK5 and MAPK-interacting kinases (MNKs) 

(Cargnello & Roux, 2011). 

 

1.5.1 ERK-signalling cascade 

The first members of the MAPKs discovered were found to be activated by receptors 

residing on the cell surface and hence named extracellular signal–regulated kinases 

(ERKs) (Boulton, Nye et al., 1991, Cooper, Bowen-Pope et al., 1982). ERK1 and 

ERK2 share more than 80% sequence identity and usually respond similarly to the 

same stimuli (Boulton et al., 1991, Roux & Blenis, 2004). The activation of ERKs is 

triggered by the MAP3Ks of the Raf-family and relayed through MEK1/2. However, 

other MAP3Ks, including tumour progression locus 2 (TPL-2), may also activate ERK 

in a cell type specific manner (Das, Cho et al., 2005, Shaul & Seger, 2007). ERK was 

found to be primarily activated by growth factors like epidermal growth factor (EGF) 

or other receptor tyrosine kinases ligands. However, other cytokines also activate 

ERK, though the activatory kinase is in many cases not clearly identified (Masuko-

Hongo, Berenbaum et al., 2004). Within the cytoplasm, ERK has many direct 

substrates which regulate transcription, translation and chromatic remodelling 

(Kyriakis & Avruch, 2001) Following activation, ERK1/2 can also translocate from the 
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cytoplasm into the nucleus. There it can phosphorylate transcription activators like 

Elk-1, NF-AT and c-Fos (Yoon & Seger, 2006). 

 

1.5.2 JNK-signalling cascade 

Identified as an interaction partner of c-Jun, the c-Jun N-terminal kinases (JNKs) were 

found to be activated by many stress stimuli like UV-irradiation, heat and osmotic 

shock, oxidative stress but also several cytokines (Hibi, Lin et al., 1993, Kyriakis & 

Avruch, 1996). There are three genes encoding for JNK members which share more 

than 85% sequence identity, but show some functional differences (Gupta, Barrett et 

al., 1996, Kyriakis, Woodgett et al., 1995). While JNK1/2 are expressed in most cell 

types and thought to have overlapping function, JNK3 is predominantly expressed in 

the brain, heart and testis (Bode & Dong, 2007). Like the ERK-family, JNK proteins 

need to be activated by a dual-phosphorylation in a conserved Thr-Pro-Tyr (TPY) 

motif (Kyriakis & Avruch, 2001). The main MAP2Ks involved in this step are MEK4 

and MEK7, which in turn can be activated by several MAP3Ks including ASK1/2, 

MEKK1-4, TAK1 and Tpl-2. Once activated, JNKs translocate to the nucleus, where 

they phosphorylate substrates including c-Jun, ELK-1 and ATF2. 

JNK is also strongly associated with cell death progression (Liu & Lin, 2005). JNK1/2-

deficient MEFs showed resistance to cell death caused by DNA damage- and UV-

irradiation. Analysis of cell death pathways revealed an impaired cytochrome c 

release, pointing toward a role of JNK in the induction of apoptosis and the control of 

mitochondrial function (Tournier, Hess et al., 2000). JNK is also associated with 

amplification of ROS via a mitochondrial pathway in response to stress (Chambers & 

LoGrasso, 2011). Additionally, JNK activation might be inhibited by NF-B signalling, 

as indicated by the prolonged JNK activation observed in IKK-deficient MEFs 

following TNF stimulation (Tang, Minemoto et al., 2001). TNF-signalling can induce 

cell death in absence of NF-B activation. It is therefore possible that JNK indeed 

contributes to cell death induction. The cell death promoting properties of JNK 

correlate with the prolonged activation of JNK, while the first more transient wave of 

activation is indeed associated with the expression of pro-survival genes (Tang, Tang 

et al., 2002). 
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1.5.3 p38-signalling cascade 

Like JNK activation, the MAPK p38 is a cell stress responsive pathway (Zarubin & 

Han, 2005). Four isoform constitute this family: p38  and . Structurally, p38 

shares around 50% identity with ERK2 and is the most ubiquitously expressed form 

(Korb, Tohidast-Akrad et al., 2006). Activation of p38 by MEK3/6 requires dual 

phosphorylation at a conserved Thr-Gly-Tyr (TGY) motif in the activation loop of all 

p38 members. Several MAP3Ks are able to initiate p38 activation; Tpl-2, ASK1, 

MLK3, TAK1 and MEKK3/4 (Cuevas, Abell et al., 2007). p38 is part of the 

inflammatory response to various stimuli including LPS, TNF and IL-1(Kang, Chen 

et al., 2008, Kim, Sano et al., 2008, Raingeaud, Gupta et al., 1995). As an upstream 

activator of gene transcription, several pro inflammatory cytokines including IL-6, IL-

8 and CCL2 were shown to be regulated in a p38-dependent manner (Saccani, 

Pantano et al., 2002). 

 

1.6 Cell death 

The crudest way of cell death is caused by mechanical destruction of the cell and is 

usually associated with tissue trauma (e.g. injuries of the skin). Injury caused by 

chemicals, excessive heat or cold can also lead to cell death. Also infections that 

disturb normal cell function can lead to cell death (Ashida, Mimuro et al., 2011). In all 

these cases, the cell is destroyed by disruption of its cell membrane which is 

accompanied by loss of membrane potential that is required to generate energy and 

leakage of cytosolic contents into the surrounding (Zong & Thompson, 2006). Cellular 

demise, known as necrosis, is from an immunological point of view strongly 

associated with acute danger. Tissue damage can be the result of barrier loss i.e. the 

epithelium, normally protecting from the outside world, which potentially leads to 

intrusion of dangerous microorganisms. Naturally, as part of the immune response, 

the body will react to any kind of injury-related cell death even in absence of an 

infection (i.e. sterile inflammation) (Chen & Nuñez, 2010). Spillage of intracellular 

content includes the release of so called ‘alarmins’. These are cytokines and other 

substances that, outside of their intracellular compartment, provoke an immune 

reaction (Bianchi, 2007). For instance, the nuclear protein High-mobility group protein 

B1 (HMGB1) functions as a regulator of transcription but can trigger an inflammatory 

response when released into the extracellular space (Scaffidi, Misteli et al., 2002). 

Similarly, extracellular presence of Adenosine triphosphate (ATP), a coenzyme that 

is vital for the majority of cell processes involved in energy transfer, acts as a 



1. Introduction 
 

38 
 

chemoattractant and activator of cells of the innate immune system. (Trautmann, 

2009). For example, differentiation of the T helper cell subset TH17 in the lamina 

propria is triggered by ATP (Atarashi, Nishimura et al., 2008). Hence, uncontrolled 

breakdown of cells is intrinsically associated with activation of the immune system. 

Cell death exists also as a controlled mechanism in multicellular organisms. 

Programmed cell death uses various pathways within the cell that can cause 

individual cells to die. It is part of the normal physiology and required to clear 

damaged, aged or mutated cells, tissue remodelling and to kill infected cells (Ellis, 

Yuan et al., 1991). 

 

1.6.1 Apoptosis 

Multicellular organisms developed a controlled way of cell death that does not 

necessarily set off an immune response. Compared to single cell organisms, 

multicellular organisms possess the luxury to sacrifice cells to maintain homeostasis 

and to consequently keep the whole organism alive. This process is known as 

apoptosis (Greek for "falling off"). Apoptotic cell death was first described based on 

particular morphological observations (Kerr, Wyllie et al., 1972). Later, studies of the 

nematode Caenorhabditis elegans (C. elegans) revealed programmed cell death 

during devolvement that caused 131 out of 1090 somatic cells inevitably to die as part 

of normal development (Sulston & Horvitz, 1977). The responsible factors required 

for this remarkable observation remained elusive for many years until a class of 

proteases were discovered to be responsible for the observed effects (Cerretti, 

Kozlosky et al., 1992, Yuan, Shaham et al., 1993). These proteases of the CED-family 

in C. elegans were found to be cysteine-aspartic proteases (caspases) which are 

conserved through evolution (Wang & Gu, 2001). Apoptotic cell death is therefore 

defined as caspase-mediated cell death (Figure 1.11). Cells that undergo apoptosis 

show a characteristic set of morphologies and biochemical markers (Elmore, 2007, 

Kerr et al., 1972). Apoptotic cells will release soluble chemoattractants like CX3C-

chemokine ligand 1 (CX3CL1) and express membrane markers including intercellular 

adhesion molecule 3 (ICAM3), to recruit specialised phagocytic cells (Moffatt, Devitt 

et al., 1999, Truman, Ford et al., 2008). Induction of apoptosis will also lead to 

extracellular exposure of phosphatidylserine (PtdSer), which is normally confined to 

the inner leaflet of the plasma membrane. PtdSer functions as an “eat-me” signal for 

professional phagocytes (Bratton, Fadok et al., 1997, Fadok, Voelker et al., 1992). 

This step is essential for inducing the engulfment of apoptotic cells by e.g. 
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macrophages (Ravichandran, 2011). Additionally, apoptotic cells undergo membrane 

fragmentation known as “blebbing” which leads to the formation of apoptotic bodies 

(Kerr et al., 1972). This process allows for a more efficient uptake of apoptotic bodies 

by phagocytic cells. Activation of caspases promotes this step by Caspase-3-

mediated cleavage and activation of RHO-associated protein kinase 1 (ROCK1) 

which in turn phosphorylates the myosin light chain thus enhancing cellular 

contraction (Sebbagh, Renvoizé et al., 2001). During blebbing, the cellular content 

remains encapsulated and the process is therefore non-inflammatory (Poon, Lucas 

et al., 2014). However, the barrier function of the cell membrane becomes 

compromised over time and small molecules may diffuse through the membrane 

freely (Silva, 2010). This hallmark of cell death can be visualised with dyes which are 

sequestered from living cells but readily stain dead cells. 

In the context of cell death induction, caspases can be classified as initiator and 

executioner caspases. The initiator caspases 2, 8, 9 and 10 activate the caspase-

cascade leading to the activation of executioner caspases 3, 6 and 7 which then 

cleave non-caspase substrates (Kumar, 2007). Initiator caspases are composed of a 

pro-domain that contains protein interaction domains and a large and small catalytic 

subunit (Nicholson, 1999). Executioner caspases lack protein binding domains in their 

pro-domain. Caspases reside in cells as inactive pro-caspases (zymogens) that 

require activation by proteolytic cleavage. In cases of initiator caspases, induction of 

cell death causes oligomerization of pro-caspases which, most likely by proximity-

induced proteolysis, results in cleavage and generation of a fragment comprising the 

pro-domain and the large subunit and a second fragment comprising the small subunit 

(Figure 1.11). In a second cleavage step, the pro-domain is removed from the large 

subunit which liberates the active subunits and allows for dimerization of an active 

complex. Executioner caspases cannot undergo auto-proteolytic activation but are 

activated by initiator caspases through cleavage between the large and small subunit. 

Subsequently, the pro-domain is removed in an autoproteolytic step, which generates 

the active subunit (Fuentes-Prior & Salvesen, 2004). Caspase have different 

preferences regarding their cleavage motif but overlap to a certain degree (McStay, 

Salvesen et al., 2008). Synthetic caspase inhibitors like zVAD-fmk or QVD-OPh inhibit 

every caspase to a certain extent. 



1. Introduction 
 

40 
 

 

Figure 1.11: Activation of Caspase-8 by proteolytic cleavage     

Procaspase-8 remains inactive in the cytosol under normal conditions. Oligomerisation upon 

recruitment to a signalling platform initiates a cascade of autoproteolytic cleavage steps. First, 

the pro-peptide between the large and small active subunit is cleaved. This generates a 

p43/41 fragment which comprises the prodomain and p18. Cleavage after the prodomain 

liberates p18 and allows for formation of the catalytic active p18 dimer composed of two 

p18/p10 dimers. 

 

Executioner caspases can activate or inactivate non-caspase targets that promote 

apoptosis on several levels. The Poly (ADP-ribose) polymerase (PARP) and inhibitor 

of caspase-activated DNase (ICAD) are two examples of caspase regulated proteins. 

PARP is involved in DNA-damage repair and is cleaved in order to facilitate the 

degradation of chromosomes (Boulares, Yakovlev et al., 1999). Furthermore, 

cleavage of ICAD, the inhibitor of Caspase-Activated DNase (CAD), liberates CAD 

which degrades chromosomal DNA and facilitates chromosomal condensation during 

apoptosis (Enari, Sakahira et al., 1998). This process also leads to the characteristic 

‘DNA-ladder’ that can be observed in gel-electrophoresis of DNA obtained from 

apoptotic cells, resulting from inter-nucleosomal DNA-cleavage (Williams, Little et al., 

1974). Activation of caspases is also associated with the exposure of 

phosphatidylserine (PtdSer) as they cleave flippases and scramblases that normally 

maintain the membrane asymmetry by actively translocating PtdSer from the outer to 

the inner leaflet of the plasma membrane (Bratton et al., 1997, Fadok et al., 1992). 

During apoptosis, caspases cleave and inactivate the flippases ATP11A/ATP11C. 

Consequently, cells unable to cleave ATP11A do not expose PtdSer upon induction 

of apoptosis and are not engulfed by macrophages (Segawa, Kurata et al., 2016, 

Segawa, Kurata et al., 2014). 
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Mainly members of the TNF receptor superfamily, including CD95, TRAILR1/2, 

TNFR1 and DR3 can trigger apoptotic death following binding of their respective 

ligand. Engagement of CD95, for instance, leads to recruitment of FADD to the 

receptor via a homotypic death domain interaction (Scott, Stec et al., 2009). FADD, 

in turn, can recruit and activate Caspase-8, thus starting the apoptosis cascade. 

Receptor-mediated induction of apoptosis is referred to as the ‘extrinsic pathway’ 

(Elmore, 2007). In contrast, the intrinsic pathway is triggered, independently of death 

receptors, by e.g. radiation, hypoxia or reactive oxygen species (ROS).The hallmark 

of the intrinsic pathway is the permeabilization of the mitochondria, which is regulated 

by the B-cell lymphoma 2 (Bcl-2) family of proteins (Czabotar, Lessene et al., 2014). 

Mitochondrial outer membrane permeabilisation (MOMP) leads to release of 

cytochrome c (Eskes, Desagher et al., 2000, Li, Zhu et al., 1998). The release of 

cytochrome c triggers formation of the apoptosome which is comprised of cytochrome 

c, activating factor 1 (Apaf-1), and pro-caspase-9 (Li, Nijhawan et al., 1997, 

Srinivasula, Ahmad et al., 1998, Zou, Henzel et al., 1997). This complex supports the 

activation of effector caspases. In many cell types, the mitochondrial pathway is 

required to fully activate executioner caspases and trigger apoptosis downstream of 

death receptors activation (Fulda & Debatin, 2006). A link between the extrinsic and 

intrinsic pathway exists via Caspase-8-mediated cleavage of the cytosolic protein 

BH3-interacting domain death agonist (BID) to truncated BID (tBID). This allows for 

association and activation of Bcl2-associated X protein (BAX) and Bcl-2 homologous 

antagonist/killer (BAK), which translocate to the mitochondrial membrane and 

perforate it (Luo, Budihardjo et al., 1998). 

Apoptosis is also part of immune cell development (Henson & Hume, 2006). During 

maturation, T- and B-cells can show reactivity to self-antigens due to the random 

nature of their receptor generation known as V(D)J-recombination (Hogquist, Baldwin 

et al., 2005, Jung & Alt, 2004). These auto-reactive T- and B-cells undergo a process 

termed negative selection. Binding to self-antigens in this stage of development will 

trigger apoptosis thus removing these cells from the organism (Kishimoto, Surh et al., 

1998, Krammer, 2000). Additionally, peripheral tolerance of T-cells is maintained by 

activation-induced cell death (AICD), which is mediated by CD95/CD95L. Failure to 

undergo AICD is associated with autoimmunity and abnormal lymphoid development 

(Rieux-Laucat, Le Deist et al., 2003). autoimmune lymphoproliferative syndrome 

(ALPS) because of impaired clearance of B- and T-cells (Rao & Straus, 2006, Straus, 

Jaffe et al., 2001). 
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Deficiency in Caspase-8 results in embryonic lethality at around day E10.5 

(Varfolomeev, Schuchmann et al., 1998). This observation was initially attributed to a 

vital role of cell death for embryonic development. These mice show hyperaemia, 

erythrocytosis in the liver, defective heart development and reduced numbers of 

hematopoietic precursor cells (Varfolomeev et al., 1998). However, it was found later, 

that Caspase-8 is required to inhibit another form of cell death called necroptosis 

(Kaiser, Upton et al., 2011). 

 

1.6.2 Necroptosis 

It was observed that TNF can induce caspase-independent cell death that resembles 

the morphology of necrosis (Holler, Zaru et al., 2000, Laster, Wood et al., 1988). Cells 

that undergo this form of cell death show signs of swelling, disruption of the cell 

membrane and lack of chromosomal fragmentation. Because of the inducible nature 

of cellular decay, this form of death is referred to as programmed necrosis or 

‘necroptosis’ (Degterev, Huang et al., 2005). A common feature of this form of death 

is the lack or insufficient activation of caspases (Fulda, 2013). Necroptosis can be 

triggered by a variety of receptor signalling pathways including TNFR1, TNF-related 

apoptosis-inducing ligand 1/2 (TRAILR1/2), CD95, TLR3/4 (He, Liang et al., 2011, 

Holler et al., 2000). These receptor signalling complexes can induce cell death by 

triggering the formation of a complex consisting of FADD, Caspase-8, cellular FLICE-

inhibitory protein (cFLIP), RIP1 and RIP3, also known as the necrosome (Figure 

1.12). Within the necrosome, Caspase-8 has a regulatory role as it can cleave and 

inactivate RIP1 and RIP3 (Chan, Shisler et al., 2003, Feng, Yang et al., 2007, Lin, 

Devin et al., 1999). Caspase-8 function is regulated by cFLIP, which exists in two 

main isoforms. cFLIP shares similarity with Procaspase-8, as it contains an 

enzymatically inactive caspase-like domain and two death effector domains (DEDs). 

The long isoform, cFLIPL, allows Caspase-8 activation, but leads to retention of the 

cFLIPL/Caspase-8 heterodimer at the complex. The activity of Caspase-8 is therefore 

localised and directed towards other complex components (Micheau, Thome et al., 

2002). In contrast, the short isoform cFLIPS is an inhibitor of Caspase-8 and therefore 

inhibits both apoptosis and necroptosis (Schilling, Geserick et al., 2014). Additionally, 

CYLD, which was also shown to promote necroptosis by facilitating the formation of 

the necrosome, is also cleaved and inactivated by Caspase-8 (O'Donnell et al., 2011). 

Failure to inhibit RIP1 activation by e.g. caspase-inhibition, results in activation of 

RIP1 by phosphorylation at S166 (Degterev, Hitomi et al., 2008, Hitomi et al., 2008). 

Phosphorylated RIP1 associates with RIP3 via a homotypic RIP homotypic interaction 
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motif (RHIM) interaction and phosphorylates it (Hitomi et al., 2008, Sun, Wang et al., 

2012). The interaction of RIP1 and RIP3 is essential at this stage because RIP3 lacks 

a death domain and can therefore not be directly recruited to FADD (Moriwaki & 

Chan, 2013). Additionally, the association of RIP1 with RIP3 requires RIP1 kinase 

activity and can be inhibited by e.g. a class of inhibitors called necrostatins (Degterev 

et al., 2008, He, Wang et al., 2009). Phosphorylated RIP1 and RIP3 form fibre-like 

structures that are insoluble by most detergents (Li, McQuade et al., 2012). A kinase-

dead form of RIP3 was shown to still interact with RIP1 but was not phosphorylated, 

indicating that RIP3 activation involves auto-phosphorylation (Cho, Challa et al., 

2009). Following activation, RIP3 associates with and activates mixed lineage kinase 

like (MLKL) (Sun et al., 2012). MLKL was identified in a screen for chemical 

compounds which inhibit mediators of necroptosis. Activation of MLKL requires RIP3 

and absence of RIP3 or its kinase inhibition blocks necroptotic cell death (Murphy, 

Czabotar et al., 2013, Sun et al., 2012, Wang, Sun et al., 2014).The necrosome is a 

supramolecular complex of ~2MDa in size that forms distinct foci upon formation that 

can be visualised by e.g. expressing fluorescently-tagged RIP1, RIP3 or MLKL 

(Feoktistova, Geserick et al., 2011, Li et al., 2012, Sun et al., 2012). The 

pseudokinase MLKL has no enzymatic activity. Phosphorylation by RIP3 leads to a 

conformational change in MLKL which opens its four-helix bundle motif located at the 

N-terminus (Hildebrand, Tanzer et al., 2014, Murphy et al., 2013). This allows MLKL 

to form oligomers which bind to phosphatidylinositol phosphates in membranes 

(Chen, Li et al., 2014, Dondelinger, Declercq et al., 2014). Upon translocation to the 

membrane, MLKL forms pores which leads to loss of membrane potential, cell 

swelling and break down of the cell. Unlike apoptosis, necroptotic death will not 

prevent the leakage of cytoplasmic content. DAMPs and alarmins will therefore be 

released into the surroundings similar to necrosis (Pasparakis & Vandenabeele, 

2015). 

 

RIP1 uses at least two domains, the DD and the RHIM for protein interactions which 

therefore support its scaffold function. The DD of RIP1 is required for TNFR1-SC 

recruitment but also mediates other DD-homotypic interactions with e.g. FADD (Park, 

Jeong et al., 2013). The RHIM mediates interaction with other RHIM-containing 

proteins including RIP3, TIR domain-containing adapter protein inducing IFN-beta 

(TRIF), and the putative nucleic acid sensor Z-DNA binding protein 1 (ZBP1, also 

known as DAI). ZBP1 was shown to induce inflammatory signalling and necroptosis 

upon viral infection (Upton, Kaiser et al., 2012). Interestingly, mutation of the RHIM in 
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RIP1 (RIP1mRHIM) in mice leads to death around birth which is characterised by high 

levels of RIP3 phosphorylation (Lin, Kumari et al., 2016, Newton, Wickliffe et al., 

2016). Blocking of the necroptotic pathway, e.g. by co-deletion of RIP3, prevented 

early lethality of RIP1mRHIM mice (Newton et al., 2016). Most strikingly, also deletion of 

ZBP1 rescued perinatal lethality in RIP1mRHIM mice (Lin et al., 2016, Newton et al., 

2016). Because ZBP1 was found to interact with activated RIP3 in the absence of 

RIP1 interaction, it seems likely that the RHIM in RIP1 is required to prevent the 

association of ZBP1 with RIP3 and its subsequent activation. Intriguingly, there are 

two consecutive RHIMs present in ZBP1 and though the functional relevance is 

currently unknown, it may point towards an adaptor function of ZBP1 in this context. 

 

Figure 1.12: TNF-induced complex II triggers apoptotic and necroptotic death Following 

its activation, the TNFR1-SC can give rise to a secondary complex which is not bound to 

TNFR1. This so called complex II can associate, via RIP1, with FADD by homotypic death 

domain interaction. This allows recruitment of Caspase-8 to FADD. Proximity-induced 

activation of Caspase-8 triggers the signalling cascade leading to apoptosis. However, cFLIPS 

can form heterodimers with Caspase-8, thus inhibiting its activation and apoptosis. 

Association of Caspase-8 with cFLIPL on the other hand allows for localised Caspase-8 

activity, which leads to cleavage of RIP1 and RIP3. In absence of Caspase-8 activity, the 

interaction of RIP1 and RIP3 via their RHIMs, leads to cross activation by phosphorylation. 

Activated RIP3 subsequently phosphorylates MLKL which leads to a conformational change 

in MLKL that enables its oligomerisation. Necroptotic cell death is executed by insertion of 

MLKL oligomers into phosphatidylinositol phosphate-containing membranes, which leads to 

pore formation and break down of the cell integrity. 
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What is the functional importance of necroptosis considering its seemingly destructive 

properties? Necroptosis has likely evolved as a backup mechanism to induce cell 

death in a scenario where caspases are inhibited (Kaiser, Upton et al., 2013). Viruses 

have evolved many ways to circumvent the anti-viral host-response. Infected cells 

can be recognised by the immune system and caspase-mediated cell death can be 

triggered to eliminate the infected cell. It is therefore not surprising that certain viruses 

have evolved mechanisms to inhibit caspase activation. Therefore, activation of the 

necroptosis machinery can surpass the viral-inhibition of caspases and still induce 

the death of an infected cell. Indeed, mice deficient in necroptosis show increased 

susceptibility to viral infections and fail to survive (Guo, Omoto et al., 2015, Kaiser, 

Sridharan et al., 2013). Necroptosis is also associated with pathological conditions 

including ischemia in the heart and kidney (Linkermann, Hackl et al., 2013). Inhibition 

of necroptotic cell death could therefore represent a potent treatment to prevent 

excessive tissue damage occurring during e.g. organ transplantation  

 

1.7 TNFR1 signalling and its regulation by ubiquitin 

Perhaps the most prominent member of the TNF-receptor superfamily is TNFR1. Its 

ligand TNF is a potent and multifunctional cytokine involved in inflammation and 

forms part of the innate immune response. Under normal conditions, TNF is not 

detectable in serum but it is produced in response to DAMPS, PAMPS and other 

inflammatory cytokines. TNF is involved in inflammatory pathophysiological 

conditions like inflammatory bowel disease, rheumatoid arthritis and psoriasis 

(Feldman, Combes et al., 2000, Peyrin-Biroulet, 2010). Because TNF itself induces 

the production of additional inflammatory cytokines in many cell types, anti-TNF 

therapy, i.e using TNF-antagonising antibodies or TNFR fusion proteins, proved to be 

effective for treatment of several inflammatory pathologies (Peyrin-Biroulet, 2010). 

Mice deficient for TNFR1 are resistant to LPS-induced shock (Pfeffer, Matsuyama et 

al., 1993, Rothe, Mackay et al., 1994, Simon, Park et al., 2010). Intriguingly, severe 

systemic inflammatory response syndrome (SIRS) was found to be prevented by 

administration of TNF-neutralising antibodies during lethal bacteraemia in baboons 

(Tracey, Fong et al., 1987). 

TNF exists as a soluble and membrane-bound trimeric protein. The soluble form can, 

in addition to TNFR1, also bind to TNFR2. This related receptor can also signal gene 

activation but not cell death as it lacks the intracellular death domain (DD). The 

expression of TNFR2 is restricted to immune and endothelial cells. Membrane-bound 
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TNF is more efficient than soluble TNF in activating TNFR2 because of its higher 

affinity (Grell, Wajant et al., 1998). TNFR1, however, is readily activated by soluble 

and membrane-bound TNF. 

The binding of TNF to TNFR1 leads to its trimerisation which creates an intracellular 

recruitment platform for the adaptor molecule TNFRSF1A Associated Via Death 

Domain (TRADD) (Hsu, Xiong et al., 1995). TRADD is supposedly the first protein in 

the signalling cascade (Figure 1.13). However, work on TRADD-deficient cells came 

to different conclusions regarding the necessity of TRADD for TNFR1-signalling. A 

study using TRADD-deficient MEFs showed absence of NF-B and MAPKs signalling 

and resistance to TNF-induced cell death (Ermolaeva, Michallet et al., 2008, 

Pobezinskaya, Kim et al., 2008). In contrast, TRADD-deficient macrophages still 

weakly responded to TNF. Accordingly, whilst RIP1 recruitment to the TNFR1-SC is 

virtually absent in MEFs, it is only diminished in macrophages (Ermolaeva et al., 2008, 

Pobezinskaya et al., 2008). Like TNFR1-deficiency, resistance to a lethal dose of D-

galactosamine N/Lipopolysaccharide (GalN/LPS) was also conferred by absence of 

TRADD (Pobezinskaya et al., 2008). Therefore, it seems that while TRADD is 

required for efficient formation and activation of the TNR1-SC, its significance in 

enabling gene activation may vary between cell types. 

TRADD also acts as an adaptor for recruitment of TRAF2/6 and cIAP1/2 (Haas et al., 

2009, Pobezinskaya et al., 2008, Vince, Pantaki et al., 2009). cIAP1/2 are E3 ligases 

which ubiquitinate many targets in the TNFR1-SC and absence of cIAP1/2 virtually 

abrogates ubiquitination of RIP1 (Haas et al., 2009). Although TRAFs are also E3s, 

their scaffolding function but not their enzymatic activity is essential for TNFR1-SC 

formation (Vince et al., 2009). K63- and K11-linked ubiquitination by cIAPs (Dynek, 

Goncharov et al., 2010, Varfolomeev, Goncharov et al., 2008) provides a binding 

platform for the recruitment of LUBAC which was shown to be required for full NF-B 

and MAPK-signalling (Gerlach et al., 2011, Haas et al., 2009, Tokunaga et al., 2011). 

This ubiquitin network also enables binding of the TAB/TAK1- and NEMO/IKK-

complex (Figure 1.13). All three LUBAC components HOIP, HOIL-1 and Sharpin 

contain ubiquitin binding domains which facilitate recruitment to signalling complexes 

or specific targets. RIP1 and NEMO have been identified as LUBAC substrates 

(Gerlach et al., 2011, Tokunaga et al., 2011). TAK1 and IKK/ do not have a UBD 

and therefore depend on TAB2/3 and NEMO, respectively, for their recruitment. The 

NZF of TAB2 binds specifically to K63-ubiquitin chains, while NEMO was shown to 

preferentially bind to M1-polyubiquitin (Komander et al., 2009b, Kulathu et al., 2009, 
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Rahighi et al., 2009). Activation of IKKs and TAK1 mediates the NF-B and MAPK 

signalling. Because activation of TAK1 and the IKKs relies on the ubiquitin system, 

lack or inhibition of cIAPs, LUBAC or the involved E2s leads to decreased NF-B and 

MAPK signalling (Wertz, 2014). 

RIP1 is amongst the most heavily ubiquitinated proteins within the TNFR1-SC 

(Gerlach et al., 2011). Therefore, RIP1 has a dual function as a kinase but also as a 

scaffold protein. This is also reflected in the phenotypes of RIP1-deficient and kinase-

dead RIP1 (K45A) expressing mice. Complete deficiency of RIP1 leads to perinatal 

death of the mice, which is caused by multiorgan cell death and excessive 

inflammation. These mice are fully rescued by concomitant deletion of Caspase-

8/RIP3 (Dillon, Weinlich et al., 2014) or RIP3/FADD (Rickard, O'Donnell et al., 2014b), 

demonstrating that uncontrolled cell death is causative for the phenotype of RIP1-

deficient mice. Strikingly, RIP1 K45A knock-in mice are viable and show no signs of 

exacerbated cell death (Berger, Kasparcova et al., 2014). Additionally, RIP1 K45A 

mice are resistant to many TNF- and inflammation-related diseases. Notably, the 

perinatal lethality of full RIP1-deficiency cannot be rescued by ablation of TNFR1, 

indicating that RIP1 is also required to prevent cell death in other pathways (Rickard 

et al., 2014b). 
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Figure 1.13: TNFR1-SC formation and regulation by the ubiquitin system 

 

1.7.1 Impact of defective ubiquitination on TNFR1-signalling 

Perturbation of the ubiquitin system can also drive the formation of a death-inducing 

complex (Figure1.14). Small-molecule SMAC mimetics bind to cIAPs and trigger their 

auto-ubiquitination, which leads to their degradation (Vince et al., 2007). Several 

tumour cell lines are in fact sensitised to death ligands when treated with SMAC 

mimetics (Fulda, 2014, Silke & Vucic, 2014, Varfolomeev et al., 2008). 

Mechanistically, the depletion of cIAPs by SMAC mimetics compromises the 

ubiquitination of TNFR1-SC components like RIP1, which normally prevents induction 

of cell death (Bertrand, Milutinovic et al., 2008, Haas et al., 2009, Li, Kobayashi et al., 

2006). Additionally, IKK-mediated phosphorylation of RIP1 was shown to be required 

to prevent cell death (Dondelinger, Jouan-Lanhouet et al., 2015). Ubiquitination of 
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RIP1, TRAF2 and cIAP1/2 is also required for recruitment of LUBAC, NEMO/IKK and 

the TAB/TAK-complex. SMAC mimetics consequently block canonical NF-B 

activation (Haas et al., 2009, Mahoney, Cheung et al., 2008). Similarly, a point 

mutation in RIP1 (K377R), which abolishes RIP1 ubiquitination completely, failed to 

restore IKK activation in RIP1-deficient Jurkat cells and sensitised them to TNF-

induced cell death (Ea et al., 2006). Conclusively, it is thought that ubiquitination of 

the TNFR1-SC prevents formation of complex II, which can lead to cell death (Figure 

1.14). However, RIP1 present in complex II is ubiquitinated even when cIAPs were 

depleted by SMAC-mimetics (de Almagro, Goncharov et al., 2015). Though it is not 

clear whether RIP1 becomes ubiquitinated in complex II again, it raises the question 

whether the overall ubiquitination of complex I, or whether specific ubiquitination 

events are required to prevent cell death. 

Just like absence of cIAP1/2 from the TNFR1-SC, deficiency in any LUBAC 

component sensitises to TNF-induced cell death (Gerlach et al., 2011, Ikeda et al., 

2011, Peltzer et al., 2014). The precise role of LUBAC in the prevention of cell death 

is still largely unknown. Absence of LUBAC was suggested to lead to reduced 

complex I formation i.e. the recruitment of signalling complex components. It is 

however unclear whether it is the impaired complex I formation that is responsible for 

emergence of a death inducing complex II. Additionally, lack of or increased DUB 

activity can lead to sensitisation to cell death. CYLD was found to be required for 

TNF-induced cell death in certain circumstances (Hitomi et al., 2008, Moquin et al., 

2013). In contrast, knockdown but also overexpression of OTULIN sensitised cells to 

TNF-induced death (Keusekotten et al., 2013). This suggests that linear ubiquitination 

needs to be correctly balanced to ensure proper function. 
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Figure 1.14: Death-promoting and -inhibiting factors in TNF signalling 

 

1.7.2 Shutdown of TNFR1-signalling by DUBs 

TNFR1-signalling employs a negative feedback-loop which facilitates the shutdown 

of gene activation. This also involves NF-B-mediated expression of DUBs like A20, 

Cezanne and CYLD, (Enesa, Zakkar et al., 2008, Hoesel & Schmid, 2013, 

Oeckinghaus et al., 2011). Following gene activation, the increased expression of e.g. 

CYLD and A20 supports complex decomposition by removing different ubiquitin 

linkages (Jono, Lim et al., 2004, Lee et al., 2000). The upregulation of these DUBs is 

at least partially responsible for disassembly of the signalling complex, but other 

factors, including the upregulation of IB are also involved (Hoesel & Schmid, 2013). 

 

1.7.3 TNFR1-induced cell death 

Apart from the induction of inflammatory genes, the activation of TNFR1 can also 

trigger the formation of a cell death-inducing complex (Wajant, Pfizenmaier et al., 

2003). The membrane-bound complex I mediates gene activation and remains 

attached to TNFR1. In a secondary event, dissociation of TRADD/RIP1 and 

potentially other molecules from TNFR1 leads to formation of a cytosolic complex II 
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which mediates cell death (Figure 1.12) (Micheau & Tschopp, 2003). It was reported 

that internalisation of the TNFR1-SC is required for the induction of death. 

Conclusively, TNFR1 lacking a putative internalisation motif can still induce gene 

activation but shows reduces induction of cell death (Schneider-Brachert et al., 2004). 

In addition to perturbation of complex ubiquitination, inhibition of translation or the 

proteasome by e.g. cycloheximide and bortezomib respectively, leads to failure in 

upregulation of anti-apoptotic proteins including cFLIP, cIAPs or BCL-2 (Genestier, 

Bonnefoy-Berard et al., 1995, Micheau, Lens et al., 2001, Wang, Mayo et al., 1998). 

TAK1 is associated with the activation of NF-B and MAPK but was also shown to 

have a direct effect on the ability of RIP1 to induce necroptosis. Inhibition of TAK1 or 

IKKs was shown to prevent an inhibitory phosphorylation of RIP1, which seems to 

inhibit cell death mediated by RIP1 kinase activity (Dondelinger et al., 2015). 

Moreover, inhibition of TAK1 or IKKs results in the formation of complex II and 

sensitises to TNF-induced cell death independently of NF-B inhibition. Strikingly, 

RIP1 K45A kinase dead mice were impervious to treatment with a lethal dose of IKK-

inhibitor TPCA-1 (Dondelinger et al., 2015). These examples show that TNF-

signalling is controlled on several levels, which need to be correctly balanced to 

enable gene activation and prevent cell death. 

 

1.8 Pattern recognition receptors 

Pattern recognition receptors (PRRs) are a vital part of the innate immune system. 

PRRs are localised in the cell according to their function. On the cell membrane, 

PRRs are equipped to recognise extracellular pathogens, whilst endosome-located 

PRRs detect remnants of pathogens that infected host cells or were phagocytosed 

(Takeuchi & Akira, 2010). The detection relies on conserved motifs, pathogen-

associated molecular patterns (PAMPs), which are common and essential to most 

pathogens. PRRs can be divided in four families: Toll-like receptors (TLR), NOD-like 

receptor (NLR), RIG-I-like receptors (RLR) and C-type lectin receptors (CLR) 

Primarily, PRRs detect molecules that are not present in the host. For example 

dsRNA, lipopolysaccharide (LPS) or flagellin is detected by TLR3, TLR4 and TLR5 

respectively (Takeda & Akira, 2015). However, some of these molecules like dsRNA 

can also naturally be present in the host cell and function as a damage-associated 

molecular pattern (DAMP) molecule. However, because PRRs like TLR7 and TLR9 

can also be activated by RNA- and DNA- associated autoantigens respectively, these 
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receptors can contribute to progression of diseases like systemic lupus 

erythematosus (Lau, Broughton et al., 2005). 

 

1.8.1 NOD2-signalling 

Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) is a member 

of the NOD-like receptor (NLR) family and recognises peptidoglycan by binding to 

muramyl dipeptide (MDP) (Girardin, Boneca et al., 2003). As part of their cell wall, 

peptidoglycan is present in both gram-positive and gram-negative bacteria, though 

gram-positive bacteria contain about 10 times more peptidoglycan. NOD2 is therefore 

a very versatile receptor for detection of bacterial infections. 

Individuals with homozygous mutation in NOD2 have a higher risk of developing 

Crohn’s disease (Hugot, Chamaillard et al., 2001). This could be due to abnormal 

response to pathogens in these patients. Deficiency in NOD2 has also been shown 

to cause more severe graft versus host disease in a mouse model (Holler, Rogler et 

al., 2004). Lack of NOD2 in hematopoietic but not non-hematopoietic cells is involved 

in the perpetuation of the disease (Penack, Smith et al., 2009). Expression of NOD2 

is mostly restricted to antigen presenting cells (APCs) but can also be induced by 

TNF or IFN. 

MDP, present in the cytosol, will bind to the Leucine-rich repeat (LRR) of NOD2 which 

then induces its oligomerisation via its NACHT domain. Mutations in the NACHT 

domain are causative for the Blau syndrome (Miceli-Richard, Lesage et al., 2001) In 

its oligomerised state, NOD2 can recruit the kinase RIP2 via its Caspase activation 

and recruitment domain (CARD) (Figure 1.15). This creates a binding platform for 

several E3s; X-linked inhibitor of apoptosis (XIAP), cIAPs, Itchy E3 Ubiquitin Protein 

Ligase (ITCH) and Pellino3 (Bertrand, Doiron et al., 2009, Tao et al., 2009, Yang, 

Wang et al., 2013). Subsequently, these ubiquitin ligases conjugate K63- and possibly 

other linkage types to RIP2. Like in the TNFR1-SC, these ubiquitin linkages are 

recognised by the ubiquitin binders TAB2/3, NEMO, and LUBAC (Damgaard et al., 

2012). In turn, LUBAC conjugates M1-linked chains to RIP2 (Fiil, Damgaard et al., 

2013). Following their recruitment and activation, NEMO/IKK and TAB/TAK1 enable 

NF-B and MAPK signalling which establishes an antimicrobial inflammatory 

response through gene activation. 
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Figure 1.15: The NOD2 signalling pathway        

The cytosolic NOD2 receptor can detect peptidoglycans derived from the bacterial cell wall. 

This leads to oligomerisation of NOD2 and subsequent recruitment of RIP2 via a homotypic 

CARD interaction. RIP2 functions as a scaffold protein for recruitment of the crucial E3s 

cIAP1/2 and XIAP which add K63-linked ubiquitin chains to RIP2. This allows for recruitment 

of LUBAC which in turn adds linear ubiquitin chains to RIP2 and possibly other components. 

Concerted action of K63- and M1-linked ubiquitin chains leads to recruitment of the NEMO/IKK 

and TAB/TAK complex, leading to activation of NF-kB and MAPK and gene activation. 
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1.9 Aim of this project 

To find factors that might regulate LUBAC and therefore SCs to which LUBAC is 

recruited, a mass spectrometry (MS) analysis of HOIP was performed (Draber, Kupka 

et al., 2015, Kupka, De Miguel et al., 2016a). Analysis of the HOIP containing complex 

revealed constitutive association of HOIP with two DUBs, CYLD and OTULIN. An 

unknown factor, Spermatogenesis-associated protein 2 (SPATA2), was also among 

the high-scoring interacting proteins.  

This study characterises the importance of the interaction of HOIP with OTULIN, 

SPATA2 and CYLD in the context of TNFR1- and NOD2-signalling. Additionally, A20, 

which was suggested to bind to linear ubiquitin chains (Tokunaga et al., 2012), was 

included in the analysis. To study the relevance of each factor for receptor signalling 

pathways, corresponding knockout cell lines were generated as a basis to answer the 

following questions: 

I. How does the interaction of HOIP with OTULIN, SPATA2 and CYLD affect 

LUBAC function? 

 

II. What is the function of the previously unrecognised TNFR1-SC component 

SPATA2? 

 

III. Does LUBAC influence or mediate the recruitment of CYLD, OTULIN and 

SPATA2 to signalling complexes? 

 

IV. Is ubiquitination of signalling complex components regulated by CYLD, 

SPATA2, OTULIN or A20? 

 

V. What is the physiological relevance of this interaction network for gene 

activatory pathways and cell death? 
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2 Materials & Methods 

 

2.1 Materials 

 

2.1.1 Chemicals & reagents 

Chemicals and other standard reagents were purchased from the following 

companies unless stated otherwise: Sigma Aldrich, Merck (Calbiochem), Invitrogen, 

Roche, Roth, Pierce. 

 

2.1.2 Buffers & solutions 

AP-lysis buffer 30 mM Tris-Base (pH7.4)  

 120 mM NaCl    

 2 mM EDTA    

 2 mM KCl   

 10% Glycerol (v/v/)  

 1% CHAPS (w/v)  

 COMPLETE protease-inhibitor cocktail 

 

Blocking buffer 5% (w/v) fat free milk powder 

 0.05% Tween-20 in PBS 

 

Borax running buffer 10 mM sodium boric acid in H2O 

 

Cresol Red PCR dye 35% sucrose (w/v) in H2O  

 0.2 mM o-cresolsulfonephtalein 

 

DUB buffer 150 mM NaCl    

 50 mM HEPES (pH 7.3)  

 2 mM Dithiothreitol (DTT)   
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Freezing medium (for eukaryotic cells) 90% FCS (v/v)  

 10% DMSO (v/v) 

 

IP-lysis buffer 30 mM Tris-Base (pH7.4) 

 120 mM NaCl    

 2 mM EDTA    

 2 mM KCl   

 10% Glycerol (v/v/)  

 1% Triton X-100 (v/v)  

 COMPLETE protease-inhibitor cocktail 

 

MOPS Running Buffer (pH 7.7) 50 mM MOPS   

 50 mM Tris-Base   

 3.5 mM SDS    

 1.0 mM EDTA 

 

Phosphate-buffered saline (PBS) (pH 7.4) 137 mM NaCl    

 8.1 mM Na2HPO4   

 2.7 mM KCl    

 1.5 mM KH2PO4 

 

Propidium Iodide solution 1 µg/ml Propidium Iodide in PBS 

 

Stripping buffer (pH 2.3) 50 mM Glycine in H2O 

 

Western blot wash buffer (PBS-T) 0.05% Tween-20 in PBS 
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Western blot Transfer Buffer (pH 8.3) 25 mM Tris    

 190 mM Glycine   

 20% Methanol (v/v) 

2.1.3 Antibodies 

 

Table 2.1: Unconjugated antibodies        

IgG immunoglobulin, IP immunoprecipitation, m murine, WB western blot 

Antibody Isotype Source Application 

A20 (sc-166692) mIgG2a Santa Cruz WB 

Actin (A5441) mIgG1 Sigma WB 

cIAP1/2 (MAB3400) mIgG2a R&D Systems WB 

CYLD (sc-74435) mIgG2a Santa Cruz WB 

FLAG (D6W5B) Rabbit Cell Signaling WB 

FLAG (M2) mIgG1 Sigma WB 

GAPDH (ab8245) mIgG1 Abcam WB 

GFP (11814460001) mIgG1 Roche WB 

GST (2622) mIgG1 Cell Signaling WB 

HOIL-1 IgG2a Haas et al., 2009 WB 

HOIP 

(ARP43241_P050) 

Rabbit Aviva System 

Biology 

WB 

IB(9242) Rabbit Cell Signaling WB 

JNK (56G8) Rabbit Cell Signaling WB 

M1-ubiquitin 

(MABS199) 

Rabbit 

(monoclonal) 

Merck Millipore WB 

OTULIN (ab151117) Rabbit Abcam WB 

p38 Rabbit Cell Signaling WB 

pERK (SC-7383) Rabbit Santa Cruz WB 

pIB (9246S) mIgG1 Cell Signaling WB 

pJNK (98F2) Rabbit Cell Signaling WB 

pp38 (D3F9) Rabbit Cell Signaling WB 

pP65 (7F1) Rabbit Cell Signaling WB 

RIP1 (610459) mIgG2a BD WB 

RIP2 (SC-22763) Rabbit Santa Cruz WB 

RIP3 (IMG-5846A) Rabbit Imgenex WB 
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Sharpin (14626-I-AP) Rabbit Proteintech WB 

SPATA2 (A302-494A) Rabbit Bethyl Laboratories WB 

SPATA2 (ab56565) Rabbit Abcam WB 

TNFR1 (8436) mIgG2b Santa Cruz WB 

TRADD (610572) mIgG1 BD WB 

Ubiquitin (FK2) mIgG1 Enzo WB 

V5 (sV5-10) mIgG1 Sigma WB 

 

Table 2.2: Horseradish-peroxidase (HRP)-conjugated antibodies  

Target antibody Origin Source 

mIgG1 Goat Southern Biotech 

mIgG2a Goat Southern Biotech 

mIgG2b Goat Southern Biotech 

Rabbit-IgG Goat Southern Biotech 

 

Cell culture media and additives 

Ampicillin      Roth, Karlsruhe; Germany 

Dulbecco‟s Modified Eagle Medium Invitrogen, California, USA 

Dulbecco‟s PBS     Invitrogen, California, USA 

G418(Geneticin®)  Invitrogen, California, USA 

Opti-MEM® Reduced Serum Medium  Invitrogen, California, USA 

Penicillin/Streptomycin Invitrogen, California, USA 

RPMI 1640      Invitrogen, California, USA 

Trypsin/EDTA solution    Invitrogen, California, USA 

 

Beads and resins for protein purification 

FLAG M2 affinity Gel     Sigma Aldrich, Missouri, USA 

HALO-affinity resin     Promega, Wisconsin, USA 
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HisPur Ni-NTA Resin Thermo Fisher Scientific, 

Massachusetts, USA 

Protein A/G PLUS-Agarose    Santa Cruz, Dallas, USA 

 

DNA isolation kits 

DNA purification columns    Syd labs, Massachusetts, USA 

QIAprep Maxi Kit      Qiagen, Hilden, Germany 

QIAprep Spin Mini Kit      Qiagen, Hilden, Germany 

QIAquick Gel Extraction Kit     Qiagen, Hilden, Germany 

RevertAidTM H Minus strand cDNA synthesis kit Fermentas, Massachusetts, 

USA 

 

2.1.4 Kits and Ready-to-Use Solutions 

 

InstantBlue Expedeon Protein Solutions, 

San Diego, USA 

Pierce ECL Plus Thermo Fisher Scientific, 

Massachusetts, USA 

 

2.1.5 Instruments 

Äkta Prime GE Healthcare, Little Chalfont, 

United Kingdom 

Blotting equipment X cell IITM Thermo Fisher Scientific, 

Massachusetts, USA 

Dark Reader DR46B Transilluminator Clare Chemical Research, Inc., 

Colorado, USA 

Electronic Pipettor, ‘Matrix’  Thermo Fisher Scientific, 

Massachusetts, USA 
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Flow Cytometer FACSCalibur Becton Dickinson, New Jersey, 

USA 

Freezer -20° C      Liebherr, Biberach, Germany 

Freezer -80° C, U570 premium New Brunswick Scientific, New 

Jersey, United States 

Light Microscope     Zeiss, Oberkochen, Germany 

Millipore Super-Q water installation   Millipore, Billerica, United States 

Multichannel pipette, ‘Xplorer’   Eppendorf, Hamburg; Germany 

Multifuge 3S-R     Heraeus, Hanau, Germany 

Multiskan Ascent Thermo Labsystems, Vantaa; 

Finnland 

NanoDrop Spectrophotometer ND-1000 NanoDrop Technologies, 

Wilmington, USA 

pH Meter  Mettler Toledo, Greifensee, 

Switzerland 

Photometer Ultrospec 3100 pro GE Healthcare, Little Chalfont, 

United Kingdom 

Pipettes (2 μl, 10 μl, 100 μl, 200 μl, 1 ml)  Gilson, Bad Camber, Germany 

Scanner, CanoScan LiDE 110   Canon Inc., Tokyo, Japan 

SRX-101A Tabletop Film Processor Konica Minolta, Tokyo, Japan 

Table Centrifuge Biofuge    Heraeus, Hanau, Germany 

Thermomixer compact     Eppendorf, Hamburg, Germany 

Vortex, Heidolph reax top     Heidolph, Schwabach, Germany 

 

2.1.6 Consumables 

50 ml Reagent Reservoir Corning Inc., Corning, USA 

Cell Culture Petri dishes    TPP, Trasadingen, Switzerland 
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Cell Culture Test Plates (6-, 12-, 24-well)   TPP, Trasadingen, Switzerland 

Cell Sieve (40 μm pore size) Becton Dickinson, New Jersey, 

USA 

Cryogenic vials     Nunc, Wiesbaden; Germany 

Falcons (15 ml and 50 ml)    TPP, Trasadingen, Switzerland 

Hybond ECL Nitrocellulose Membrane Amersham Bioscience, 

Buckinghamshire, UK 

NuPAGE® 4-12% Bis-Tris Gels   Invitrogen, California, USA 

PCR Tubes      StarLab, Ahrensburg, Germany 

Pipette tips (0.1-10, 1-200, 101-1000 μl)  StarLab, Ahrensburg, Germany 

Plastic pipettes (5 ml, 10 ml and 15 ml) Becton Dickinson, Heidelberg; 

Germany 

Polypropylene round bottom tube (5 ml) Becton Dickinson, Heidelberg; 

Germany 

Round and flat bottom 96-well test plates   TPP, Trasadingen, Switzerland 

Safe-Lock Reaction Tubes (1,5ml, 2 ml)  Eppendorf, Hamburg, Germany 

Single-Use Needles Becton Dickinson, Heidelberg; 

Germany 

Single-Use Syringe (1 ml, 2 ml Becton Dickinson, Heidelberg, 

Germany 

Single-Use Syringe (5 ml, 30 ml, 50 ml)  Terumo, Eschborn, Germany 

Sterile filter (0.22 μm pore size)   Millipore, Billerica, United States 

Tissue Culture flasks (25, 75, 150 cm2)  TPP, Trasadingen, Switzerland 

Vivaspin Concentrator MWCO 10000  Sartorius, Goettingen, Germany 

X-Ray film  Scientific Laboratory Supplies 

Ltd, Nottingham, UK 
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2.1.7 Software 

ApE sequence analyser    M. Wayne Davis 

Ascent Software Version 2.6 Thermo Labsystems, Vantaa, 

Finnland 

Endnote Thomson Reuters, New York, 

United States 

Illustrator      Adobe, San Jose, United States 

Microsoft® Excel 2003    Microsoft, Redmont; United 

States 

Microsoft® Word 2003     Microsoft, Redmont; United 

States 

Photoshop      Adobe, San Jose, United States 

PyMol Open Source (Schrödinger,  

New York, United States) 

Vector NTI      Invitrogen, California, USA  

 

2.1.8 Cell lines 

 

A549 

The adenocarcinoma cell line A549 was established from tissue obtained from a 58-

year-old male patient (Giard, Aaronson et al., 1973). 

 

HEK293T 

Human embryonic kidney cells 293 (HEK293) were established by transformation of 

cells obtained from an aborted human foetus by adenoviral infection (Graham, Smiley 

et al., 1977). This resulted in an integration of the viral genome into chromosome 19. 

HEK293T cells are very suitable for DNA transfection and protein production. 
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HeLa 

This cervix adenocarcinoma-derived cell line was established in 1951 by George Otto 

Gey from patient named Henrietta Lacks and is the first human epithelial cancer cell 

line successfully maintained for long-term cell culture (SCHERER, SYVERTON et al., 

1953). HeLa cells have a hypertriploid chromosome number (3n+) leading to 76 to 80 

total chromosomes (Bottomley, Trainer et al., 1969). Additionally, HeLa cells have 

multiple integrations of human papillomavirus 18 (Macville, Schröck et al., 1999). 

 

K562 

The first erythroleukaemia-type cell line which was immortalised for long-term culture 

was K562 (Lozzio & Lozzio, 1975). This line was derived from a 53-year-old female 

who presented with chronic myelogenous leukaemia. 

 

Mouse Embryonic Fibroblasts (MEFs) 

Fibroblast are involved in the maintenance of connective tissue by secreting 

components that reconstitute the extracellular matrix (Tracy, Minasian et al., 2016). 

Mouse Embryonic fibroblasts (MEFs) were isolated from day E13-15 old embryos by 

homogenising the embryos and resuspending the cell homogenate in 0.5% Trypsin 

in PBS. The enzymatic digest was incubated for 20 minutes at 37 ˚C. After addition 

of Fetal calf serum (FCS) containing DMEM, tissue was further homogenised by 

petting ~20 times. Released cells were washed by centrifugation and replacement 

with fresh medium, two times. Cells were then seeded in culture dishes and 

immortalised by transduction of SV40 large T antigen. 

 

U937 

The human lymphoma U937 was derived from a male patient who presented with 

histiocytic lymphoma in 1976 (Sundström & Nilsson, 1976). U937 cells can 

differentiate in response to several stimuli causing them to adopt macrophage-like 

morphology. 
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2.2 Methods 

 

2.2.1 Culturing of eukaryotic cells 

All cell lines were cultured in a humidified atmosphere adjusted to 5% CO2 at 37 °C. 

HEK293T, HeLa and MEFs were maintained in Dulbecco’s modified Eagle’s medium 

(DMEM) with 5% foetal calf serum. To seed cells in different vessels or to prevent 

confluency, cells were detached by incubation in 1X Trypsin (Thermo Fisher 

Scientific) in PBS solution. 

U937 and K562 and A549 cell lines were maintained at 37 °C in Roswell Park 

Memorial Institute medium (RPMI) supplemented with 10% FCS at 5% CO2. 

 

2.2.2 Freezing and thawing of eukaryotic cells 

To preserve cell lines, 70% confluent cells were collected, washed once with normal 

medium and resuspended in freezing medium (FCS containing 10% Dimethyl 

sulfoxide(v/v). 

 

2.2.3 Isolation of Bone Marrow Derived Macrophages (BMDMs) 

BMDMs were obtained from 8-week-old mice. Hind legs were removed and tissue 

was separated from bones. Femur and tibia were opened on each site using scissors 

and bone marrow was flushed out using a 25-gauge needle and syringe. Cells were 

collected and resuspended in BMDM medium (RPMI medium containing 10%FCS, 

1% penicillin/streptomycin (Invitrogen) and 10% of L929 cell-conditioned medium). 

After passing the cell suspension through a cell strainer, cells were plated in a 12-

well plate. BMDM medium was replaced every two days and cells were incubated for 

a total of seven days before they were used in experiments. 

 

2.2.4 Transient transfection 

The day before transfection, cells were seeded and allowed to reach 50-70% 

confluency on the day of transfection. Per well of a 6-well plate, 1 μg DNA was diluted 

in 100 μl Opti-MEM. Likewise, TurboFect transfection reagent (Thermo Scientific) or 

Lipofectamine 2000 (Thermo Fisher) was diluted in in 100 μl Opti-MEM. The ratio of 

μg DNA/μl transfection reagent was maintained at a 1:3. The dilutions of DNA and 
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transfection reagent were mix and incubated for 30 minutes. Subsequently, the 

mixture was added dropwise to the cells. Cells were left to grow for another day before 

used in experiments. 

 

2.2.5 siRNA-mediated knockdown 

Transient knockdown of protein expression was achieved by reverse transfection of 

cells with siRNA using Lipofectamine 2000 (Invitrogen) following recommendations 

of the manufacturer. Lipofectamine 2000 was added to Opti-MEM medium and 

incubated for 5 minutes at room temperature. Next, siRNA (25 nM final concentration) 

was added and incubated for additional 20 minutes. The reaction mix was then added 

dropwise to the cells and the final volume was adjusted with antibiotic free medium. 

The ratio of Lipofectamine/siRNA was kept 3:1. All experiments were carried out 48-

72 hours after transfection. 

 

2.2.6 Retro- and lentivrial infection of eukaryotic cells 

Genes of interest were cloned into the Murine Stem Cell Virus (MSCV) retroviral 

vector system (Clontech), which co-expresses green fluorescent protein (GFP) via an 

internal ribosomal entry site (IRES), and transfected in Phoenix-AMPHO cells (Nolan 

lab). This engineered HEK293 cell line constitutively expresses gag-pol and envelope 

protein for amphotropic viruses. Transfection was prepared by diluting DNA and 

Polyethylenimine (PEI) in Opti-MEM reduced serum medium (Thermo Fisher) The 

DNA/PEI ratio was kept at a 1:4. The transfection mixture was added dropwise to the 

cells. Next day, the medium was exchanged for antibiotic-free medium and cells were 

left an additional 24h in the incubator. After 48h and 72h, supernatants were collected 

and either directly used for cell infection or stored at -80 ˚C. 

For cell infection, cells were seeded to reach 60% confluence on the day of infection. 

Viral supernatants were passed through a 0.45 μm filter diluted, 1:2 with antibiotics-

free medium and Hexadimethrine bromide (polybrene) was added to a final 

concentration of 6 μg/ml before cells were subjected to spin-infection (2500 rpm, 45 

min, 30 °C). After two days, GFP-positive cells were sorted by Fluorescence-activated 

cell sorting (FACS). 
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2.2.7 Generation of knockout cell lines using Lentiviral CRISPR-Cas9 

Lentiviral particles for CRISPR-Cas9 mediated knockout (KO) were generated by 

transfection of Lenti-CRISPR v2 together with packaging vector psPAX2 and 

envelope coding vector pMD2G (Trono Lab) into HEK293T cells. Following guide 

RNAs were used: A20(KO) 5’-GGCGCTGTTCAGCACGCTCA; A20(ΔZnF2-5) 5’-

GTGAACGTTGCCACAACGCC; A20(ΔZnF7) 5’-GTTGCAGTAGCCGTTGCACT; 

CYLD(KO) 5’-CACATCAATGATATCATCCC; OTULIN(KO) 5’-

GAATTGCTTATACATGAAAG; HOIP(KO) 5’-TTGACACCACGCCAGTACCG. After 

collection of viral particle supernatants, transfection of cells was carried out identical 

to infection with retroviral particles. After 2 days, cells were subjected to puromycin 

(2 μg/ml) selection for one week or, in case of IRES-GFP expressing vectors, sorted 

for GFP positive cells. Selected populations were subcloned by serial dilution and 

single cell clones analysed for loss of protein expression by western blot and target 

gene sequencing. 

 

2.2.8 Use of inhibitors in cellular systems 

All chemical inhibitors of cellular functions were appropriately diluted in medium and 

then added to the cells 30 minutes prior to any stimulus or analysis. 

 

2.2.9 Quantification of cell death 

For analysis of cell death, suspension cells were collected centrifuged at 1500rpm for 

5 minutes. In cases of adherent cells, supernatant containing floating dead cells was 

collected first, remaining adherent cells trypsinised and combined with the 

supernatant. After centrifugation, the cell pellet was resuspended in PBS containing 

5 μg/ml propidium iodide (Sigma). Cells were analysed by FACS. Data is presented 

as mean ± standard error of the mean (SEM) (n = 3), statistics were performed using 

T-test. 

 

2.3 Molecular Biology 

 

2.3.1 DNA restriction digest 

DNA restriction for analytic or preparative purpose was performed using FastDigest 

restriction enzymes) and buffers (Thermo Fisher Scientific). Per reaction, DNA was 
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diluted in water, mix with 10X buffer solution and 1µl of the appropriate enzyme(s) 

added. The total volume was kept at 30µl. Samples were incubated 30 minutes at 37 

˚C. 

2.3.2 Purification of DNA 

For purification of in vitro produced DNA, QIAquick PCR Purification Kit (Qiagen) was 

used according to the manufacture’s recommendations. Alternatively, the buffer 

system was used in combination with third party DNA spin columns (Sydlabs). DNA 

was eluted in water. 

 

2.3.3 Agarose gel electrophoresis of DNA 

Separation of DNA for analytical or preparative purpose was achieved by agarose gel 

electrophoresis. Gels were prepared by melting 0.5-2% Agarose (w/v) in Borax buffer 

using a microwave oven. Gel solutions was then poured in gel casting trays (BioRad) 

and allowed to cool. Samples were applied in gel pockets and electrophoresis was 

carried out in Borax running buffer. 

 

2.3.4 Gel extraction of DNA fragments 

Recovery of DNA from agarose gels was achieved using QIAquick Gel Extraction Kit 

(Qiagen) according to the manufacturer’s recommendations. DNA was visualised 

using a Dark Reader DR46B Transilluminator (Clare Chemical Research, Inc.) and 

excised using a scalpel. Gel pieces were weighed and three times the volume of gel 

extraction buffer (Qiagen) was added per 100mg of gel and dissolved at 55 ˚C. DNA 

was purified using provided spin columns (Syd labs) and eluted in water. 

 

2.3.5 Ligation of DNA fragments for cloning 

Compatible DNA overhangs or blunt ends were ligated using T4 DNA ligase (Thermo 

Fisher Scientific). For insertion of DNA fragments, originating from PCR reactions or 

DNA restriction, in vectors, the molar ratio of insert and vector was adjusted to 4:1. 

The provided 10X buffer solution was added before 1µl of T4 DNA ligase (5U/µl) was 

mix with the solution. Samples were left on room temperature for at least four hours 

to allow for ligation. 
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2.3.6 Transformation of competent E.coli 

Chemically competent DG1 or BL21 (DE3) E.coli bacteria (Eurogentec) were mixed 

with approximately 10 ng Vector and left on ice for 15 minutes. Reaction tubes 

containing bacteria were then transferred to a water bath set at 42 ˚C for 35 seconds. 

Tubes were then allowed to cool on ice for 1 minute before addition of Super Optimal 

broth with Catabolite repression (SOC). Cells were allowed to grow for at least one 

hour before plating on agar plates containing the antibiotics to which the vector 

provides resistance. Following positive selection, individual clones were picked and 

verified by gene sequencing. 

 

2.3.7 Isolation of Plasmid DNA 

Propagation of plasmid DNA was carried out in DG1 E.coli bacteria (Eurogentec). 

Bacteria were allowed to grow in selection medium containing the appropriate 

antibiotics for 24 hours. Cells were collected and centrifuged at 13.000 rpm for 10 

minutes. DNA was purified from the pellet using QIAprep Spin Mini Kit (Qiagen). 

 

2.3.8 Isolation of genomic DNA 

Genomic DNA from cultured cells was isolated using GenElute Mammalian Genomic 

DNA Miniprep Kit (Sigma), according to the manufacturer’s recommendations. 

 

2.3.9 Polymerase Chain Reaction (PCR) 

Specific DNA fragments were amplified by PCR using a thermos cycler. For analytic 

purposes 5’ DNA master mix was used and each reaction was set up as following: 

 

Table 2.3: 5’ PCR master mix set-up 

Component Amount [µl] 

2.5X 5’ Master mix 8 

H2O 8 

Forward primer (10 µM) 1 

Reverse primer (10 µM) 1 

Cresol Red PCR dye 2 
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For preparative PCR amplification for e.g. cloning, KAPA HiFi HotStart ReadyMix 

PCR Kit (Kapa Biosystems) was used and prepared as following: 

Table 2.4: 2X Kapa-HiFi master mix set-up 

Component Amount [µl] 

2X Kapa-HiFi master mix 10 

H2O 6 

Forward primer (10 µM) 1 

Reverse primer (10 µM) 1 

Cresol Red PCR dye 2 

 

PCR-reaction tubes were placed in a Mastercycler pro PCR machine (Eppendorf). 

The standard temperature profile was set to: 

Initial denaturation: 98 ˚C, 2min 

Denaturation: 98 ˚C, 20s 

Annealing: 50-68 ˚C, 15s        33x 

Elongation: 72 ˚C 1min/1kb 

Final elongation: 72 ˚C 30s 

 

2.3.10 Preparation of cDNA 

Complementary DNA (cDNA) was prepared by isolating mRNA from cultured cells 

using RNeasy Mini Kit (QIAGEN) according to the manufacturer’s manual. Cells were 

collected and pelleted by centrifugation. Medium was aspirated and pellet 

resuspended in lysis buffer provided in the kit. RNA was purified by sequential binding 

and washing steps, using the provided RNA-binding spin columns. RNA was eluted 

in water. cDNA was generated using RevertAid First Strand cDNA Synthesis Kit 

(Thermo Fisher Scientific) according to the manufacturer’s’ manual. In brief, 1 µg RNA 

was mixed with 1 µl oligo(dt) in 12 µl H2O total volume and incubated at 65 °C for 5 

minutes. Subsequently, buffer, RNase Inhibitor, dNTP’s and reverse transcriptase 

were and incubated at 42 °C for 60 minutes. Reverse transcriptase was heat-

inactivated at 70 °C for 5 minutes. 
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2.4 Biochemistry 

 

2.4.1 Relative measurement of protein concentration 

Comparative analysis via western blot was supported by adjusting total cell lysates to 

equal amounts. Following lysis and centrifugation, 1-5 µl of the sample was used in 

the copper-based colorimetric Pierce Bicinchoninic acid (BCA) Protein Assay 

(Thermo Fisher Scientific). In brief, 50 parts component A was mixed with 1 part of 

component B. and distributed in a 96-well plate. Lysates were added to each well and 

proteins allowed to react until a violet colour was clearly visible in all samples. 

Absorbance at A562 nm was then measured using a Multiskan Ascent plate reader. 

 

2.4.2 Quantitative determination of protein and DNA concentration 

Concentration of DNA and proteins in aqueous solutions was determined with a 

NanoDrop Spectrophotometer. 

 

2.4.3 SDS polyacrylamide gel electrophoresis (SDS-PAGE) 

Samples were heated in 50 mM DTT-containing NuPAGE lithium dodecyl sulfate 

(LDS) Sample Buffer (Thermo Fisher Scientific) at 80 ˚C for 10 minutes. Separation 

of proteins according to their size was achieved by SDS-PAGE separation on 4-15% 

Mini-PROTEAN® TGX™ Precast Gels with TGX running buffer or NuPAGE Bis-Tris 

gels with MOPS running buffer. 

 

2.4.4 Coomassie staining of SDS-PAGE gels 

Proteins separated by SDS-PAGE were visualised by incubating the gel in 

InstantBlue (Expedion Protein Solutions). 

 

2.4.5 Western blot 

The transfer of proteins to a membrane allows their detection with specific antibodies. 

A pre-packed 0.2 μM nitrocellulose membrane assembly was used (BioRad, Trans-

Blot® Turbo™ Mini Nitrocellulose Transfer Packs). The setup was composed of a 

layer of filter papers at the anode of the apparatus, on top a nitrocellulose membrane, 
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the gel and lastly another layer of filter papers. Protein transfer was carried out at a 

constant 20V output.  

After the blotting procedure, the membrane was incubated for at least one hour in 5% 

milk powder in PBS-T to block unspecific protein bindings sites. The membrane was 

then washed three times for at least 10 minutes with PBS-T before adding a primary 

antibody. Primary antibodies were incubated for at least 1h at room temperature or 

overnight at 4 ̊ C. The blot was washed three times with PBS-T and the corresponding 

secondary antibody was added and incubated for at least 1h at room temperature. 

Unless indicated otherwise, experiments were performed in biological triplicates and 

a representative result is shown. 

 

2.4.6 Stripping of Western blot membranes 

To re-probe a blot with another primary antibody, the blot was treated for 10min in 

stripping- buffer, to remove old primary/secondary antibodies. Stripping buffer was 

then removed and the blot was washed 3 times, followed by 10min incubation in 5% 

milk powder in TBST. 

 

2.4.7 Production of recombinant TNF 

A tandem affinity purification (TAP) tag, consisting of a His-tag followed by 3X Flag-

tag, a PreScission cleavage site and 2X Strep-tag II was fused to the extracellular 

portion of TNF (aa78- 233). Alternatively, a poly-His-tag was added to TNF (aa78-

233). Both fusion proteins were cloned into pQE30 vector (Draber et al., 2015). 

Proteins were expressed in BL21 (DE3) cells by induction with 1 mM Isopropyl--D-

thio-galactoside (IPTG) and incubated overnight at 30 °C. Following lysis of bacteria, 

the soluble protein was purified by affinity chromatography on His GraviTrap TALON 

columns (GE Healthcare), eluted with 500 mM imidazole and dialyzed against storage 

buffer (50 mM Tris, pH 7.4, 100 mM NaCl, 0.02% Tween, 2 mM DTT, 0.5 M arginine). 

The final protein concentration was measured using a Nanodrop 2000 (Thermo Fisher 

Scientific) and samples were stored at -20 °C. 

 

2.4.8 Production and coupling of ubiquitin affinity proteins 

Coding sequence of OTULIN was cloned from cDNA isolated from K562 cells. The 

coding sequence of the K63-AP protein is based on the tUIM (Rx3(A7)) construct 
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described previously (Sims et al., 2012) and was synthesised by Life Technologies. 

The M1-AP protein (OTULIN aa58-352, C129A) was cloned by conventional PCR 

and ligated into pH6HTC His6HaloTag® T7 Vector (Promega) using XhoI and XbaI 

restriction sites. Total ubiquitin binding protein is derived from the Rabex5 UIM 

(aa147-198) and was synthesised (Life Technologies) as tandem repeat, separated 

by a TEV-linker, and integrated into pH6HTC His6HaloTag® T7 Vector (Promega) 

using XhoI and XbaI restriction sites. The sequence of the Rabex5 2XUIM-TEV is: 

MGIHVDQSDLLCKKGCGYYGNPAWQGFCSKCWREEYHKARQKQIQEDWELAER

LQREEEEAFASSQGENLYFQSGGGIHVDQSDLLCKKGCGYYGNPAWQGFCSKC

WREEYHKARQKQIQEDWELAERLQREEEEAFASSQ. The underlined sequence 

indicates the TEV-linker. 

A second M1-AP tool based on tandem repeats of the NEMO UBAN domain (aa289-

360), separated by a TEV-linker, and was synthesised (Life Technologies) and cloned 

into pH6HTN His6HaloTag® T7 Vector (Promega) using XbaI and NotI restriction 

sites. The sequence of the NEMO 2XUBAN-TEV is: 

MEQHKIVMETVPVLKAQADIYKADFQAERQAREKLAEKKELLQEQLEQLQREYSKL

KASCQESARIEDMRKRHVLEPTTEDLYFQSDNDEQHKIVMETVPVLKAQADIYKAD

FQAERQAREKLAEKKELLQEQLEQLQREYSKLKASCQESARIEDMRKRHV. The 

underlined sequence indicates the TEV-linker. Expression vectors were transformed 

into competent BL21 (DE3) bacteria. Halo-tagged proteins were expressed by auto 

induction using 2YT Broth medium (ForMedium) according to the manufacturer’s 

recommendation. Proteins were extracted using bacteria lysis buffer (50 mM HEPES, 

pH 7.6, 150 mM NaCl, 100 μg/ml Lysozyme, 2 mM DTT) and lysate was sonicated 

for one minute. Lysates were cleared by centrifugation at 25,000 rpm for 45 minutes. 

Cleared lysates of HALO-OTULIN was aliquoted and frozen at -20 °C. Aliquots were 

then used to freshly couple HALO-tagged ubiquitin affinity proteins to HALO-beads 

(Promega) according to the manufacturer’s recommendation prior to experiment. All 

other HALO-tagged proteins were purified from lysates using a HisTrap HP 5ml 

column (GE Healthcare) attached to an ÄKTA Prime (GE Healthcare). Following 

binding of the protein, the column was washed with 15 times the column volume with 

lysis buffer. Elution of HALO-tagged proteins was achieved by running an increasing 

gradient of Immidazole through the column and fractions of the eluent were collected 

and analysed by coomassie SDS-PAGE. 50% (v/v/) Glycerol was added to the protein 

solutions which were stored at -80 ˚C for long term, and -20 ˚C for short term (< 3 

month) storage. 
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2.4.9 Production of deubiquitinases (DUBs) 

Coding sequences for OTULIN and USP21 were cloned from cDNA. Coding 

sequence for vOTU was synthesised (Life technologies). Sequences were cloned into 

GEX6- P2 vector. Expression vectors and transformed into BL21 (DE3) bacteria. 

glutathione S-transferase (GST)-tagged proteins were expressed as described for 

ubiquitin affinity proteins. GST-tagged DUBs were purified using Glutathione agarose 

beads (Sigma) according to manufacturer’s manual. Following binding, beads were 

washed three times with DUB-buffer (50 mM HEPES, pH 7.6, 150 mM NaCl, 5 mM 

DTT). PreScission protease (GE Healthcare) was added (160 U per 1ml of beads, 4 

°C, overnight) in order to remove the GST-tag and to elute the proteins. Protein 

concentration was measured with a Nanodrop 2000 (Thermo Scientific) and glycerol 

was added to a final concentration of 20%. Samples were aliquoted and stored at -80 

°C. Recombinant human CYLD (aa583-956) was produced essentially as described 

previously (Komander et al., 2008), and kindly provided by Katrin Rittinger. 

 

2.4.10 Immunoprecipitation of protein complexes 

Ectopically expressed proteins were purified via their respective tag. Following cell 

lysis in IP-lysis buffer, lysate was cleared by centrifugation. FLAG-tagged proteins 

were immunoprecipitated using anti-FLAG (M2) beads (Sigma Aldrich). Where other 

antibodies have been used, 1 μg of antibody was bound to Protein A/G beads (Santa 

Cruz Biotechnology) prior to the addition to the lysate. Immunoprecipitations were 

carried out at 4 °C with gentle rotation for 4-16 hours. Beads were then washed three 

times with lysis buffer and reduced using LDS sample buffer. 

 

2.4.11 TNFR1-SC purification 

Flag-tagged TNF (1 μg/ml) in medium (37 °C) was added to the cells for the indicated 

time. Stimulation medium was removed and cells were washed with cold PBS in order 

to slow down propagation of signalling. PBS was removed and cells were lysed in IP-

lysis buffer. Cellular debris was cleared by centrifugation at 13.000 rpm for 20 

minutes. 1/100 of the amount of FLAG-TNF used for the stimulation was added to 

lysates obtained from non-stimulated cells as a negative control. 10 µg M2 beads 

(Sigma) were then added to the lysate and incubated overnight at 4 °C. Next day, 

samples were washed three times with IP-buffer and then reduced in sample buffer. 
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3 Results 

In order identify and analyse HOIP-associated proteins, K562-deficient cells were 

created by transfection of Zinc finger nucleases targeting the HOIP gene in exon 

XXX. Individual clones were obtained by serial dilution and disruption of the HOIP 

coding gene, RNF31, was validated by sequencing. Next, these cells were viraly 

reconstituted with vector control, HOIP-FLAG or enzymatic inactive HOIP-C885S-

FLAG. 

3.1 Analysis of the interaction of CYLD, OTULIN and SPATA2 with HOIP 

To validate the constitutive interaction of CYLD, OTULIN and SPATA2 with HOIP, 

found by mass spectrometry (Draber et al., 2015), HOIP was immunoprecipitated 

from HOIP-deficient K562 cells reconstituted with either FLAG- tagged wild type or 

enzymatic inactive C885S HOIP and compared to empty vector control. Western blot 

analysis of these samples showed that Sharpin and HOIL-1 but also CYLD, OTULIN 

and SPATA2 interact with LUBAC, independently of its enzymatic activity (Figure 3.1). 

Hence, LUBAC is associated with two DUBs and SPATA2. 

 

 

Figure 3.1: SPATA2, CYLD and OTULIN are constitutively associated with HOIP  

HOIP-deficient K562 cells were virally reconstituted with either TAP-tagged (3XFLAG-

2XStrep) HOIP WT or enzymatic inactive HOIP-C885S expression plasmids. empty TAP 

vector was transduced as a negative control. Cells were lysed and tagged HOIP was 

immunopurified using anti-FLAG M2 beads (Sigma). Next day, beads were washed to remove 

unbound proteins, samples were reduced in LDS-buffer and analysed by western blot for the 

association of SPATA2, CYLD and OTULIN with HOIP. * indicates non-specific detection. 
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3.1.1 CYLD and SPATA2, but not OTULIN, are recruited to the TNFR1-SC 

The constitutive interaction of SPATA2, CYLD and OTULIN with HOIP suggested a 

simultaneous recruitment to signalling complexes. Indeed, immunoprecipitation of 

FLAG-TNF revealed recruitment of SPATA2, CYLD and HOIP to the native TNFR1-

SC with similar kinetics (Figure 3.2). OTULIN, however, was not detected to form part 

of the TNFR1-SC, although every other LUBAC-associated protein and additional 

complex components were clearly detected (Figure 3.2). In summary, although 

SPATA2, CYLD and OTULIN constitutively interact with HOIP, only SPATA2 and 

CYLD are recruited to the TNFR1-SC with kinetics similar to HOIP, whilst OTULIN is 

not recruited at all. 

 

Figure 3.2: SPATA2, CYLD, but not OTULIN are recruited to the TNFR1-SC   

(A) Immunoprecipitation of FLAG-TNF confirms recruitment of SPATA2 and CYLD but not 

OTULIN to the TNFR1-SC. U937 cells were stimulated with 1 µg/ml FLAG-TNF for the 

indicated time. As a control, FLAG-TNF was added after cell lysis and designated as time 

point 0’. Cells were lysed in IP-lysis buffer and the TNFR1-SC was isolated by anti-FLAG 

immunoprecipitation. Lysate and IP samples were separated on the same gel and analysed 

by western blot. 
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3.1.2 CYLD and SPATA2 recruitment to the TNFR1-SC is HOIP dependent 

Because of the constitutive interaction of CYLD and SPATA2 with HOIP and their 

concomitant recruitment to the TNF-RSC, it is possible that these proteins are 

recruited in a HOIP-dependent manner. To address this, the TNFR1-SC was isolated 

from WT and HOIP-KO A549 cells. Strikingly, neither CYLD nor SPATA2 were 

recruited to the TNFR1-SC in the absence of HOIP (Figure 3.3, A). This same result 

was also obtained in HeLa cells (Draber et al., 2015). It was, however, unclear 

whether CYLD or SPATA2 require HOIP as an adaptor for their recruitment or 

whether linear ubiquitin chains created by LUBAC are responsible for the recruitment. 

HOIP-deficient A549 cells were therefore reconstituted with either HOIP (HOIP-WT) 

or enzymatically inactive HOIP (HOIP-CS). Analysis of the TNFR1-SC showed that 

SPATA2 and CYLD were recruited independently of the enzymatic activity of HOIP 

(Figure 3.3, B). Hence, SPATA2 and CYLD require HOIP as a scaffold protein for 

their recruitment to the TNFR1-SC. 

 

Figure 3.3: SPATA2 and CYLD recruitment to the TNFR1-SC requires HOIP   

(A) Comparison of TNFR1-SC purifications derived from wild type and HOIP-deficient A549 

cells shows that recruitment of CYLD and SPATA2 to the TNFR1-SC is dependent on HOIP. 

A549 cells, proficient or deficient for HOIP, were subjected to TNFR1-SC purification using 1 

µg/ml FLAG-TNF for cell stimulation. FLAG-IP-purified complexes were analysed by western 

blot.            

(B) The enzymatic activity of HOIP is not required for the recruitment of SPATA2 or CYLD to 

the TNFR1-SC. HOIP-deficient A549 cells were virally reconstituted with either wild type HOIP 

(HOIP-WT) or an enzymatically inactive HOIP-C885S (HOIP-CS). TNFR1-SC was purified 

using 1 µg/ml FLAG-TNF and analysed by western blot. 
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3.1.3 CYLD and SPATA2 are also recruited to the NOD2-SC 

The analysis of the TNFR1-SC in absence of HOIP revealed a strong dependency of 

CYLD and SPATA2 on HOIP for their recruitment (Figure 3.4). It was therefore 

possible that HOIP is also required for the recruitment of these factors to other 

signalling complexes employing LUBAC, like the NOD2-signalling complex. A549 

cells pro- or deficient for HOIP were therefore reconstituted with FLAG-tagged NOD2 

as these cells do not naturally express this intracellular peptidoglycan receptor. The 

synthetic ligand L18-muramyl dipeptide (L18-MDP) was used to trigger signalling via 

NOD2 and the signalling complex was purified via FLAG-immunoprecipitation. 

Western blot analysis of these samples showed that SPATA2 and CYLD are indeed 

recruited to NOD2. Importantly, both proteins were absent from the NOD2-SC when 

HOIP was absent (Figure 3.4). Therefore, HOIP also acts as an adaptor for SPATA2 

and CYLD recruitment to the NOD2-SC in addition to its linear ubiquitination activity. 

 

 

Figure 3.4: CYLD and SPATA2 recruitment to the NOD2-SC is HOIP-dependent   

Wild type or HOIP-deficient A549 cells were reconstituted with FLAG-NOD2 to allow for 

purification of the NOD2-SC by anti-FLAG immunoprecipitation. After stimulation with 

200ng/ml L18-MDP, the NOD2-SC was isolated via FLAG-immunoprecipitation and analysed 

by western blotting. 
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3.1.4 Deficiency in CYLD leads to loss of SPATA2 stability 

Next, protein expression in HeLa cells lacking either HOIP, CYLD or OTULIN was 

analysed. As shown in Figure 3.5, the stability of SPATA2 was drastically decreased 

by absence of CYLD. SPATA2 protein levels remained unchanged in cell lines lacking 

either HOIP or OTULIN. This indicated that SPATA2 and CYLD might also be 

functionally associated. 

 

Figure 3.5: SPATA2 is destabilised in absence of CYLD     

Protein expression level of SPATA2 is reduced in CYLD-, but not HOIP- or OTULIN-deficient 

HeLa cells. Cell lysates were generated from HeLa cells deficient for HOIP, CYLD or OTULIN 

and compared to control cells with regards to the protein level of SPATA2, CYLD HOIP and 

OTULIN using western blotting. 

 

3.2 Characterisation of the SPATA2-CYLD-HOIP interaction 

The interaction of OTULIN with HOIP was shown to be direct (Elliott, Nielsen et al., 

2014, Schaeffer, Akutsu et al., 2014). However, a similar analysis using recombinant 

HOIP-PUB domain and the USP domain of CYLD did not suggest a direct interaction 

between these proteins (Kupka et al., 2016a). Because of the strong connection 

between CYLD, SPATA2 and HOIP, the interaction of these proteins was analysed 

more closely. 

 

3.2.1 CYLD interacts indirectly with HOIP via SPATA2 

CYLD, OTULIN and SPATA2 were overexpressed in different combinations to test 

their influence on each other with respect to binding to HOIP (Figure 3.6, A). Next, 

HOIP was purified and analysed for interacting proteins by western blot. In 
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accordance with the reported direct interaction, overexpression of OTULIN together 

with HOIP led to a drastic increase in the amount of OTULIN that is bound to HOIP, 

compared to endogenous levels (Figure 3.6, A). However, the over expression of 

CYLD led only to a marginal increase in HOIP-associated CYLD. This unproportioned 

increase suggested that the interaction of CYLD with HOIP is indirect and possibly 

requires an additional factor. Overexpression of SPATA2 alone did not significantly 

change the amount of endogenous CYLD that bound to the overexpressed HOIP. 

However, concomitant overexpression of SPATA2 with CYLD increased binding of 

CYLD to HOIP proportionally to the amount that was overexpressed (Figure 3.6, A). 

Importantly, SPATA2 was sufficient to fully restore CYLD binding, indicating that it is 

the only factor required and sufficient for binding of CYLD to HOIP. To validate this 

finding on an endogenous protein level background, knockdown of SPATA2 was 

performed using RNAi and the effect on association of CYLD and HOIP was 

analysed. Indeed, suppression of SPATA2 expression by RNAi drastically diminished 

the constitutive interaction of CYLD with HOIP (Figure 3.6, B). In summary, while the 

interaction of OTULIN and HOIP is direct, the binding of CYLD to HOIP is mediated 

by SPATA2. 

 

Figure 3.6: Binding of CYLD to HOIP is mediated by SPATA2      

(A) SPATA2 is required and sufficient for binding of CYLD to HOIP. Combinations of SPATA2, 

CYLD, OTULIN and FLAG-HOIP were expressed in HEK293 cells. The resulting complexes 

were purified by FLAG-HOIP-immunoprecipitation and analysed by western blot.   

(B) Binding of CYLD to HOIP is abrogated in absence of SPATA2. HEK293 cells were 

transfected with FLAG-HOIP and siRNA targeting SPATA2. HOIP was purified as in (A) and 

analysed for SPATA2 association via western blot. * indicates non-specific detection. 
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3.2.2 SPATA2 is required for recruitment of CYLD to the TNFR1-SC 

Because the ablation of SPATA2 disrupted the constitutive interaction of CYLD with 

HOIP, the effect of SPATA2-loss on CYLD recruitment to the TNFR1-SC was also 

analysed. Purification of the TNFR1-SC revealed that CYLD was not recruited to the 

signalling complex following depletion of SPATA2 via RNAi in A549 cells (Figure 3.7). 

Importantly, presence of HOIP in the complex was unaffected, indicating that the 

recruitment of HOIP is an upstream event. Hence, loss of SPATA2 enables binding 

of CYLD to HOIP, which is required for the recruitment of CYLD to the TNFR1-SC. 

 

Figure 3.7: SPATA2 is required for recruitment of CYLD to the TNFR1-SC   

Recruitment of CYLD to the TNFR1-SC is abrogated in absence of SPATA2. Control or 

SPATA2 siRNA was transfected in A549 cells. After 2 days, cells were stimulated with 1 µg/ml 

FLAG-TNF for the indicated time. The TNFR1-SC was isolated by anti-FLAG 

immunoprecipitation and analysed by western blot for the recruitment of SPATA2, CYLD and 

HOIP. 

 

3.2.3 OTULIN and CYLD interact with the PUB domain of HOIP 

To map the interaction of OTULIN, SPATA2 and CYLD with HOIP, different truncation 

mutants of TAP-tagged HOIP were expressed in HOIP-deficient K562 cells. 

Immunoprecipitation of HOIP revealed that constructs lacking the N-terminal PUB-

domain did not interact with OTULIN, SPATA2 or CYLD anymore (Figure 3.8, A). 

However, the N-terminal deletion mutants still interacted with Sharpin and HOIL-1, 

indicating that HOIP, and not Sharpin or HOIL-1, interacts with OTULIN, SPATA2 and 

CYLD. The point mutation of asparagine (N) 102 to alanine (A) in the PUB domain of 

HOIP (HOIP-N102A) was shown to abolish the interaction of HOIP with OTULIN 

SPATA2

IP: FLAG

     (TNF)

Lysate

CYLD

HOIP

HOIP

TNFR1

SPATA2

CYLD

-50

-50

-50

-50

-100

-100

-100

-100

siCTRL siSPATA2

TNFR1

TNF [1μg/ml] 0’ 15’ 0’ 15’

A549



3. Results 

81 
 

(Elliott et al., 2014). HOIP-deficient A549 cells were therefore reconstituted with HOIP 

or HOIP-N102A to investigate the importance of this residue for binding of 

SPATA2/CYLD to HOIP. Analysis of the TNFR1-SC obtained from HOIP-N102A 

expressing cells showed that CYLD and SPATA2 were no longer recruited to the 

TNFR1-SC (Figure 3.8, B). Hence, the PUB domain is critical for mediating the 

interaction with both OTULIN and SPATA2/CYLD. 

 

Figure 3.8: OTULIN, SPATA2 and CYLD bind to the PUB domain of HOIP   

(A) Binding of SPATA2, CYLD and OTULIN to HOIP is lost in absence of HOIP’s PUB domain. 

HOIP-deficient K562 cells were virally reconstituted with either vector, full length HOIP, ΔPUB-

HOIP, or ΔPUB-NZF2-HOIP. FLAG-HOIP was purified using anti-FLAG M2 beads and 

samples were analysed for associated proteins using western blotting.    

(B) Mutation of amino acid Asp102 to Ala in the PUB of HOIP abrogates recruitment of CYLD 

and SPATA2 to the TNFR1-SC. A549 cells deficient for HOIP were reconstituted with HOIP 

or HOIP-N102A. 1µg/ml FLAG-TNF was added to the cells for 15 minutes before washing and 

lysing the cells in IP-buffer. Subsequently, the TNFR1-SC was purified by anti-TNF 

immunoprecipitation and samples were analysed by western blot. 
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3.2.4 The USP domain of CYLD is sufficient for interaction with HOIP 

The domain in CYLD, responsible for the interaction with HOIP, was determined by 

creating a truncated version of CYLD which only comprised the enzymatically active 

USP domain, but lacks the C-terminal CAP-Gly-domains (CYLD-USP). CYLD and 

CYLD-USP were expressed together with FLAG-HOIP and protein complexes were 

immunoprecipitated via the FLAG-tag. As seen in Figure 3.9, the USP domain of 

CYLD was sufficient for binding to HOIP. Moreover, the exogenously expressed USP 

domain competed with endogenous CYLD for binding to HOIP (Figure 3.9, lane 4). 

 

Figure 3.9: The USP domain of CYLD is sufficient for binding to HOIP   

Immunoprecipitation of FLAG-HOIP co-purifies a C-terminal fragment of CYLD comprising the 

USP domain. Combinations of FLAG-HOIP, CYLD and the USP domain of CYLD were 

expressed in HEK293 cells. HOIP was immunoprecipitated by anti-FLAG IP and the complex 

was analysed using western blot. 

 

3.2.5 SPATA2 binds CYLD and HOIP with different domains 

SPATA2 acts as an adaptor between CYLD and HOIP, thus bridging the interaction 

of the two. To map the responsible domain in SPATA2, which mediates the interaction 

with HOIP and CYLD respectively, different truncation mutants were created. These 

GFP-tagged SPATA2 versions were expressed and analysed for binding to HOIP and 

CYLD. Analysis of these samples revealed that only truncations of the N-terminal 

region, comprising a part of SPATA2’s PUB domain, still interacted with CYLD (Figure 

3.10). The interaction with HOIP on the other hand was mediated by a domain located 

between aa167–417 in SPATA2 (Figure 3.10). 
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Figure 3.10: SPATA2 binds CYLD and HOIP with different domains    

HOIP binds a motif in SPATA2 which is located between aa116-417, whereas CYLD bind to 

the N-terminus (aa1-116) of SPATA2. GFP-tagged full-length SPATA2 or truncations were 

expressed in HEK293 cells. Protein complexes were immunoprecipitated using anti-GFP and 

samples were analysed for associated HOIP and CYLD by western blotting. The experiment 

was performed two times * indicates non-specific detection. 

 

3.2.6 SPATA2 contains a PIM that directly interacts with the PUB of HOIP 

Because the interaction of SPATA2 was disrupted by the N102A mutation located in 

the PUB domain of HOIP, it is likely that SPATA2, like OTULIN, contains a PIM which 

directly binds to the PIM-pocket in the PUB domain. Therefore, peptide arrays 

spanning amino acid 201-520 of SPATA2 were spotted on a nitrocellulose membrane. 

These 20-mer peptides overlap by one aa and each spot is shifted by one aa towards 

the C-terminus. Hence, a potential binding motif shorter than 20 aa will be present in 

several neighbouring spots. The membrane was subsequently incubated with 

recombinant GST or GST-tagged PUB domain of HOIP (GST-PUB). After washing 

the unbound proteins away, specifically bound proteins were detected using standard 

western blot detection via antibodies. The result of membranes incubated with either 

GST (coloured in black) or GST-PUB (coloured in red) were graphically 

superimposed. The PIM of OUTLIN served as a positive control and readily bound to 

GST-PUB (Figure 3.11). Importantly, a sequence spanning aa 319-347 in SPATA2 

specifically interacted with the PUB domain of HOIP. The corresponding sequence 

RGTYFSTQDDVDLYTDSEPR can be regarded as the PIM of SPATA2. Hence, 

SPATA2 directly binds to HOIP via a PUB-PIM interaction. 
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Figure 3.11: A PIM in SPATA2 directly binds to the PUB domain of HOIP   

The PUB domain of HOIP binds to a motif located between aa319-347 of SPATA2. Arrays 

consisting of 20-mer overlapping peptides, corresponding to aa201–520 of SPATA2, were 

blotted on nitrocellulose membranes. The OTULIN PIM peptide served as a positive control. 

One membrane was incubated with recombinant GST-only (GST) the other one with GST-

tagged PUB-domain of HOIP (GST-PUB). GST was subsequently detected by HRP 

immunofluorescence. The resulting image of GST-PUB detection was pseudo-coloured in red 

and overlaid with the GST-only image. 

 

3.2.7 The PIM of SPATA2 is evolutionary conserved 

Because the PIM of SPATA2 is required for binding to HOIP thus enabling recruitment 

of CYLD to signalling complexes, the importance of this domain is likely reflected by 

its evolutionary conservation. The PIM identified in human SPATA2 was therefore 

aligned to the corresponding sequence found in SPATA2 in other species (Figure 

3.12, A). The sequence alignment shows a high degree of evolutionary conservation 

providing further evidence for the importance of this interaction for the function of 

SPATA2. OTULIN and SPATA2 contain an Asp and Tyr in the same position of the 

PIM, and both residues were shown to be critical for OTULIN binding to the PUB 

domain of HOIP (Elliott et al., 2014). 
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Figure 3.12: The PIM in SPATA2 is highly evolutionary conserved      

(A) Sequence alignment of the SPATA2 PIM region found in different species indicates a high 

degree of evolutionary conservation especially between aa333-340 of human SPATA2. Dr, 

Danio rerio; Cm, Chelonia mydas; Ap, Anas platyrhynchos; Gg, Gallus gallus; Mm, Mus 

musculus; Oa, Ovis aries; Ec, Equus caballus; Pt, Pan troglodytes. Underlined sequence 

represents the PIM as determined by peptide arrays (Figure 3.11).      

(B) D336 and Y338 of the human SPATA2 PIM are also found in human OTULIN.     

* indicates identity, : indicates similarity. 

 

3.3 Functional relevance of OTULIN for LUBAC function 

Having established the molecular basis for the interaction of CYLD, SPATA2 and 

OTULIN with HOIP, the functional consequence of this interaction was analysed. 

First, the effect of OTULIN on LUBAC’s role in TNFR1-signalling was analysed. As 

OTULIN was absent from the TNFR1-signalling complex, a regulation of LUBAC prior 

to its recruitment to the TNFR1-SC was likely. 

 

3.3.1 Inactive OUTLIN stabilises M1-ubiquitination 

LUBAC was shown to generate linear ubiquitin chains upon overexpression of HOIP 

together with either Sharpin or HOIL-1 (Gerlach et al., 2011). Because of the 

constitutive interaction of OTULIN with HOIP, OTULIN likely functions as an inhibitor 

of LUBAC’s function. OTULIN, or the enzymatically inactive OTULIN C126A, were 

therefore expressed together with LUBAC in order to assess the effect on LUBAC’s 

function (Figure 3.13). Overexpression of LUBAC only slightly increased the amount 

of M1-linked ubiquitin chains detected in the lysate, however, this increase was 

reverted when OTULIN was co-overexpressed (Figure 3.13, lane 3). Strikingly, 

overexpression of OTULIN C126A together with LUBAC not only failed to revert 

increased linear ubiquitination but instead led to a drastic accumulation of M1-linked 
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chains. This indicates that enzymatically inactive OTULIN acts as a dominant 

negative inhibitor of endogenous OTULIN and M1-chain hydrolysis. 

 

 

Figure 3.13: Enzymatically inactive OTULIN stabilises linear ubiquitin chains 

Deubiquitinase inactive OTULIN C126A acts in a dominant negative manner and stabilises 

linear ubiquitin chains generated by overexpressed LUBAC. V5-tagged LUBAC (V5-

HOIP/HOIL-1) was overexpressed in HEK293 cells, together with OTULIN or enzymatically 

inactive OTULIN C126A. Two days after transfection, cells were lysed and analysed via 

western blotting. 

 

3.3.2 Aberrant M1-linked ubiquitin chains are conjugated to unknown targets 

OTULIN-deficient cells were described to accumulate linear ubiquitin chains (Rivkin 

et al., 2013). However, it was not clear whether these chains were attached to 

proteins or whether LUBAC generates free linear ubiquitin chains in absence of 

OTULIN. To address this question, lysates from OTULIN-deficient A549 cells were 

subjected to an in vitro deubiquitination assay. As shown in Figure 3.14, A, treatment 

with recombinant OTULIN or the non-specific DUB USP21 cleaved all linear ubiquitin 

chains. In contrast, treatment with IsoT (USP5), which requires a free C-terminus for 

hydrolysing ubiquitin chains, was unable to remove M1-ubiquitin chain conjugates 

(Figure 3.14, A). In a control, however, IsoT could cleave recombinant unanchored 

M1-linked ubiquitin chains (Figure 3.14, B). Interestingly, HOIL-1 showed increased 

ubiquitination, which was removed by treatment with OTULIN, suggesting that HOIL-
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1 is modified by M1-linked ubiquitin in absence of OTULIN. In summary, the increase 

in linear ubiquitination in absence of OTULIN is not caused by accumulation of free 

linear ubiquitin chains. Instead, linear ubiquitin chains accumulate on unknown 

LUBAC substrates. Additionally, LUBAC components themselves might be linearly-

ubiquitinated in absence of OTULIN, as seen on HOIL-1. 

 

 

Figure 3.14: Absence of OTULIN leads to accumulation of M1 ubiquitin chains  

(A) M1-linked ubiquitin chains that accumulated in absence of OTULIN are conjugated to 

proteins and are not free. OTULIN-deficient A549 cells were lysed in absence of protease 

inhibitors and resulting lysates were subjected to in vitro deubiquitination by adding 1µM 

recombinant OTULIN (specific for linear ubiquitin chains), IsoT (unable to cleave conjugated 

ubiquitin chains) or USP21 (able to cleave all all ubiquitin chain types). Samples were 

incubated for 1 hour at 37˚C. Samples were analysed by western blotting. 

(B) The activity of OTULIN and IsoT used in (A) was verified using recombinant linear tetra-

ubiquitin, demonstrating that IsoT can indeed cleave free linear ubiquitin chains. Samples 

were separated by SDS-PAGE and visualised using Coomassie Blue. The experiment was 

repeated two times. 
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3.3.3 Absence of OTULIN from the TNFR1-SC is not due to its DUB activity 

The lack of OTULIN recruitment to the TNF-RSC was surprising, as another group 

reported that overexpressed OTULIN can be recruited to the TNFR1-SC upon 

stimulation (Schaeffer et al., 2014). To further investigate this discrepancy, OTULIN 

or enzymatically inactive OTULIN-C129A was overexpressed in OTULIN-deficient 

A549 cells and the TNFR1-SC was isolated using immunoprecipitation of FLAG-TNF. 

Analysis of the TNFR1-SC did not show any recruitment of active nor inactive OTULIN 

(Figure 3.15). Interestingly, despite of the absence of OTULIN from the SC, 

overexpression of active OTULIN, but not inactive OTULIN-C129A, drastically 

reduced the amount of linear ubiquitin chains present in the TNFR1-SC (Figure 3.15). 

However, it was not clear from which SC-components had reduced M1-ubiquitination 

in presence of OTULIN. 

 

 

Figure 3.15: OTULIN’s absence from the TNFR1-SC is not due to its activity    

Both active and deubiquitinase-inactive OTULIN are absent from the TNFR1-SC. A549 

OTULIN-KO cells were transfected with control empty vector, OTULIN (OTULIN-WT) or 

enzymatically inactive OTULIN-C129A. After two days, 1µg/ml FLAG-TNF was add to the cells 

for 15 minutes and the TNFR1-SC was isolated by immunoprecipitation of FLAG-TNF. Amount 

of M1-linked ubiquitin chains and recruitment of OTULIN to the TNFR1-SC was analysed 

using western blotting. 

 

3.3.4 Ubiquitin binding domains can be used to enrich ubiquitinated proteins 

Naturally occurring UBDs have an affinity for ubiquitin chains in the KD range of µM to 

mM. Several studies demonstrated that tandem repeats of ubiquitin binding domains 
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increase the binding affinity (Hjerpe et al., 2009). Accordingly, high affinity ubiquitin-

binding entities can be used to purify or detect ubiquitinated proteins. Based on this 

idea, different ubiquitin binding molecules were created that are capable of binding to 

different chain types with varying affinities. These proteins were fused to a HALO-tag 

which allows covalent binding to HALO-affinity resin. Because the inactive OTULIN 

C126A was found to stabilise M1-linked ubiquitin chains (Figure 3.15), a HALO-

tagged OTULIN C126A was created to allow for specific affinity purification (AP) of 

M1-ubiquitinated proteins (M1-AP). Additionally, an affinity protein based on the UIM 

of RAP80 has exquisite specificity for K63-linked ubiquitin chains over M1-linked 

chains (Sims, Scavone et al., 2012) was produced as a HALO-tagged affinity protein 

allowing for affinity purification of K63-ubiqutinated proteins (K63-AP). The 

recombinant proteins were coupled to HALO-resin, and added to the cell lysates. Both 

affinity proteins enriched linear ubiquitin chains that were formed upon TNF 

stimulation (Figure 3.16, A). Importantly, M1-linked chains were only found in HOIP-

proficient cells (Figure 3.16, A, B). Furthermore, substantial amounts of other ubiquitin 

chain types were only detected in K63-AP, detected by a total ubiquitin antibody. This 

is in line with reports that K63-linked chains are abundant in non-stimulated cells 

(Dammer et al., 2011). The specificity of the M1-AP was further validated by using 

recombinant K63- or M1-linked ubiquitin chains, which showed that only M1-linked 

chains were enriched by this method (Figure 3.16, C) Hence, ubiquitin affinity 

purification resins can be used to enrich for specific ubiquitin chains. 
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Figure 3.16: Ubiquitin-AP allows for enrichment of specific ubiquitin chains   

(A) K63- or M1-linked ubiquitin chain-specific binding domains are specific for the respective 

chain type. M1-AP or K63-AP was performed by adding the corresponding bead-coupled 

proteins to lysates from non-stimulated or TNF-stimulated lysates obtained from either wild 

type or HOIP-KO A549 cells. Next day, beads were washed and bound linear or total ubiquitin 

chains were detected by western blotting.       

(B) Western blot analysis of corresponding total lysates used for Ubi-AP in (A) .  

(C) M1-AP shows weak association with K63-linked chains while efficiently binding to M1-

linked ubiquitin chains. M1-AP was performed on recombinant penta-K63 or tetra-M1 ubiquitin 

chains. Samples were analysed via western blot. Experiment was performed two times. 

 

3.3.5 OTULIN controls LUBAC function in the cytosol 

To analyse the effect of OTULIN-deficiency on TNFR1-SC formation, an enrichment 

of linear ubiquitinated proteins via M1-AP was performed using wild type and 

OTULIN-deficient A549 cells. In this experiment, OTULIN-deficient cells show much 

higher levels of linear ubiquitin even in non-stimulated conditions (Figure 3.17, A). 

However, the ubiquitination of the TNFR1-SC component RIP1, was unchanged. The 

LUBAC components HOIL-1 and Sharpin, on the other hand, showed a marked 

increase in ubiquitination even prior to TNF stimulation in OTULIN-deficient cells 

(Figure 3.17, B). Hence, OTULIN functions as a steady-state inhibitor of aberrant 

ubiquitination of LUBAC, whilst ubiquitination of other LUBAC targets like RIP1 is not 

affected by OTULIN-deficiency. 
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Figure 3.17: OTULIN inhibits auto-ubiquitination of LUBAC     

(A) Absence of OTULIN leads to accumulation of M1-linked ubiquitin chains already in 

absence of exogenous stimuli. The ubiquitination of the LUBAC substrate RIP1 is, however, 

unaffected by absence of OTULIN. WT and OTULIN-deficient A549 cells were stimulated with 

200ng/ml TNF for the indicated time and subjected to M1-AP and analysed by western 

blotting.            

(B) The LUBAC components HOIL-1 and Sharpin are markedly ubiquitinated in absence of 

OTULIN, prior to stimulation with TNF. WT and OTULIN-deficient A549 cells were stimulated 

with 200ng/ml TNF for the indicated time and HOIL-1 and Sharpin was detected by western 

blotting. 

 

3.3.6 Absence or knockdown of OTULIN does not affect TNF-signalling 

Because OTULIN deficiency consistently led to a marked increase in linear 

ubiquitination of LUBAC and possibly other unknown proteins, the potential effect on 

TNF-induced gene activation was analysed. When comparing wild type and OTULIN-

deficient A549 cells, no discernible difference in the activation of NF-B but a slight 

reduction in JNK phosphorylation was detected, despite substantially increased M1-

ubiquitination (Figure 3.18, A). Because knockout cells could have adapted to the 

condition of OTULIN-deficiency and aberrant linear ubiquitination, OTULIN 

expression was also transiently reduced by RNAi (Figure 3.18, B). However, also 

acute loss of OTULIN expression (2 days after siRNA transfection) did not lead to 

increased gene activation (Figure 3.18, B). It can therefore be concluded that an 
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increased linear ubiquitination caused by OTULIN deficiency does not lead to 

increased gene activation by TNF in the cells that were analysed. 

 

 

Figure 3.18: OTULIN-deficiency does not affect NF-B signalling following stimulation 

with a non-physiological TNF-concentration       

(A) Knockout of OTULIN does not lead to evident differences in the activation of gene inducing 

pathways. Wild type or OTULIN-deficient A549 cells were stimulated with 200ng/ml TNF for 

the indicated time, lysed and phosphorylation of P65, JNK, pERK and degradation of IB 

was detected by western blotting        

(B) Like knockout, the knockdown of OTULIN does not lead to evident differences in the 

activation of gene inducing pathways. Two days after transfecting HeLa cells with control or 

OTULIN siRNA, cells were stimulated with 200ng/ml TNF for the indicated times and activation 

of NF-B (i.e. phosphorylation of P65, IB IKK) and phosphorylation of TBK1 was 

compared to control transfected cells by western blotting. 

 

3.4 Discovery of LUBAC substrates 

Because of the limited knowledge about LUBAC substrates, it was required to 

establish novel tools and methods first, which could allow for the identification of such 

proteins. Ubiquitin affinity purification offers great versatility and further efforts were 

therefore undertaken to improve this method to identify ubiquitinated proteins but also 

the linkage types present on these proteins. 
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3.4.1 Comparison of M1- and total ubiquitination affinity purification 

In addition to the M1- and K63-AP systems, a total ubiquitin binding protein was 

created to allow enrichment and analysis of the overall-ubiquitination of proteins (Ubi-

AP). This HALO-tagged ubiquitin binding protein was designed based on the UIM of 

Rabex5, which was shown to have comparable affinity for the different linkage types 

(Shin, Lee et al., 2012). Ubi-AP allows for enrichment of all ubiquitinated proteins and 

those which are associated with ubiquitinated complexes. Comparison of M1- and 

Ubi-AP shows that both approaches enriched for M1-linked ubiquitin chains, but also 

the TNFR1-SC components TNFR1 and TRADD (Figure 3.19). TNFR1 and TRADD 

were heavily ubiquitinated following stimulation with TNF. In contrast, ubiquitinated 

pIB, which does not form part of the TNFR1-SC, was only enriched by Ubi-AP. 

However, based on this experiment it was not clear whether TNFR1 and TRADD are 

modified with linear ubiquitin chains or merely associated with other M1-modified 

proteins which form part of the same complex. 

 

Figure 3.19: TNFR1 and TRADD are associated with M1-linked ubiquitin chains   

M1-AP can capture ubiquitinated TNFR1, and TRADD from TNF-stimulated U937 cells. U937 

cells were stimulated with TNF [200ng/ml] for 10 minutes, lysed and subjected to M1- or Ubi-

AP. Samples were analysed by western blotting. 
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3.4.2 TNFR1 and TRADD are modified with M1-linked ubiquitin chains 

Previously, the only substrates reported for LUBAC and M1-ubiquitination were RIP1 

and NEMO (Gerlach et al., 2011). To identify previously unrecognised LUBAC 

targets, a methodology was established allowing for identification of proteins that are 

directly modified with linear ubiquitin chains (Figure 3.20). After stimulation of the 

cells, samples were first denatured in lysis buffer contain 1% Sodium dodecyl sulfate 

(SDS). This procedure disrupts any complex that has formed and dissociates all 

proteins. This step is important to prevent enrichment of proteins that merely bind to 

linear ubiquitin chains. Next, M1-affinity purification was performed to enrich linearly-

ubiquitinated proteins. All non-bound proteins that were not M1-ubiquitinated were 

subsequently washed away. To evaluate the extent of linear ubiquitination of these 

proteins, recombinant OTULIN was added to these samples. This treatment removes 

all linear ubiquitin chains, while leaving all other chain types intact. Additionally, 

samples were treated with viral OTU (vOTU), a DUB that cleaves all chain types 

except M1-linked chains (Mevissen, Hospenthal et al., 2013). Following in vitro 

deubiquitination, samples were analysed by western blot. 
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Figure 3.20: Methodology to identify M1-ubiquitin chain-modified proteins     

(i) First, cells are stimulated with the respective ligand. (ii) Cells are lysed in lysis buffer 

containing 1% SDS to denature protein complexes and to dissociate non-ubiquitinated from 

ubiquitinated proteins. (iii) To enable affinity purification of ubiquitinated proteins, the SDS 

concentration in samples is diluted to 0.1% and affinity resin is added to the samples. (iv) 

Enriched ubiquitinated proteins are subjected to an in vitro deubiquitination assay. Addition of 

OTULIN will selectively remove linear ubiquitin chains, whilst vOTU will remove all other chain 

types but leave linear ubiquitin chains intact. 

 

As shown in Figure 3.21, this method efficiently enriched M1-modified proteins from 

TNF-stimulated cells. Interestingly, a small amount of linear ubiquitin chains can also 

be enriched from non-stimulated cells, indicating that there may be tonic signalling, 

possibly coming from pathways other than TNF. Staining directly for TNFR1-SC 

components revealed that in addition to the reported LUBAC substrate RIP1 also 

TNFR1 and TRADD were enriched with this method (Figure 3.21). Treatment with 

OTULIN removed virtually all M1-linked ubiquitin chains and, importantly, led to a 
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decrease in the molecular weight of ubiquitinated TNFR1, TRADD and RIP1. This 

indicates that these proteins were indeed modified with linear ubiquitin chains. In 

contrast, treatment with vOTU led to the complete removal of ubiquitin chains from 

the proteins and occurrence of free linear ubiquitin chains. These free linear ubiquitin 

chains varied in length and some exceeded ~150 kDa. The majority, however, was 

between 4-9 ubiquitin molecules long. In summary, using this method, TNFR1 and 

TRADD were identified as previously unrecognised LUBAC substrates. Also, most 

linear ubiquitin chains in the TNFR1-SC are composed of 4-9 moieties. 

 

Figure 3.21: TNFR1, TRADD and RIP1 are modified with M1 ubiquitin chains   

The linear ubiquitination of TNFR1, TRADD and RIP1 can be confirmed by in vitro 

deubiquitination with recombinant OTULIN, which leads to a decrease in their molecular 

weight. U937 cells were stimulated with 200ng/ml TNF or left untreated. M1-ubiquitinated 

proteins were subsequently isolated using HALO-OTULIN (M1-AP) and purified samples were 

subjected to in vitro deubiquitination using either OTULIN or vOTU (unable to cleave linear 

ubiquitin chains) and analysed by western blot. 
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3.4.3 Verification of the linear ubiquitination of TNFR1, TRADD and RIP1 

To further validate the finding that TNFR1, TRADD and RIP1 are modified with linear 

ubiquitin chains, the M1-AP was also performed in A549 cells. HOIP-deficient A549 

cells were included as a negative control. This experiment showed that also in A549 

cells TNFR1, TRADD and RIP1 were efficiently bound by the M1-AP and a substantial 

portion of their ubiquitination could be removed by treatment with recombinant 

OTULIN (Figure 3.22). Importantly, M1-ubiquitinated TNFR1, TRADD or RIP1 was 

only retrieved from HOIP-proficient cells, which demonstrates the specificity of the 

M1-AP for linear ubiquitin chains. 

 

Figure 3.22: M1-ubiquitinated proteins cannot be isolated from HOIP-KO cells  

M1-AP fails to isolate TNFR1, TRADD, RIP1 and M1-linked ubiquitin chains from HOIP-

deficient cells. Wild type or HOIP-deficient A549 were stimulated with 200ng/ml TNF for 10 

minutes and lysates were subjected to M1-AP. Samples were then subjected to an in vitro 

DUB-assay using OTULIN and/or vOTU before western blot analysis. * indicates non-specific 

detection. 
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3.4.4 Total TRADD and TNFR1 ubiquitination is affected by LUBAC absence 

To test whether other chain types on these proteins are also affected by absence of 

LUBAC, HOIP-deficient (HOIP-KO) and -proficient cells were stimulated with TNF and 

subjected to total ubiquitin enrichment (Ubi-AP). Western blot analysis of these 

samples showed that in HOIP-deficient cells, the overall ubiquitination of TNFR1 and 

TRADD is reduced to an extent that exceeds the amount of M1-linked ubiquitin chains 

which were attached to these proteins (Figure 3.23). The ubiquitination of RIP1 and 

cIAP1/2 on the other hand was comparable between wild type and HOIP-KO cells. 

This indicates that in absence of LUBAC, TNFR1 and TRADD ubiquitination is 

primarily impaired. 

 

Figure 3.23: Reduced ubiquitination of TRADD and TNFR1 in absence of HOIP  

WNon-sepcific isolation of ubiquitinated proteins from lysates obtained from HOIP-deficient 

cells demonstrates a defect in overall ubiquitination of TNFR1 and TRADD. Wild type and 

HOIP-deficient A549 were stimulated with 200ng/ml TNF for the indicated times. Ubiquitinated 

proteins were isolated from lysates using total Ubi-AP and samples were analysed by western 

blotting. * indicates non-specific detection. 
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3.5 Comparison of different lysis conditions to extract the TNFR1-SC  

It was reported that the TNFR1-SC forms part of a Triton X-100-insolbule membrane 

fraction (Legler, Micheau et al., 2003). It is therefore likely that ubiquitinated proteins 

also form part of the Triton X100-insolbule fraction. Different lysis conditions were 

therefore compared to evaluate which lysis conditions are best to extract ubiquitinated 

proteins. 

 

3.5.1 Ubiquitinated TNFR1-SC components become Triton X-100 insoluble 

First, a sequential lysis was performed to separate fractions of different solubility i.e. 

membrane, cytosolic, etc. fractions. After stimulation of HeLa cells, samples were first 

lysed in 0.1% Saponin. This detergent was shown to form holes of around 100Å in 

plasma membranes, allowing leakage of small soluble proteins but retaining larger 

protein complexes and membrane bound proteins (Seeman, Cheng et al., 1973). 

After centrifugation, the soluble fraction was collected and the pellet resuspended in 

1% Triton X-100 lysis buffer (TX-100), which efficiently solubilises most proteins 

including many membrane proteins, but leaves protein complexes intact. Lastly, the 

TX-100-insoluble pellet was lysed in the anionic detergent SDS. Used at 1%, it 

denatures protein structures and solubilises them effectively. Following 1% SDS lysis, 

samples were diluted to 0.1% SDS and all fractions were subjected to Ubi-AP. Lysis 

with Saponin did not liberate significant amounts of ubiquitinated proteins from cells, 

showing that these proteins and complexes are either membrane bound or too large 

to escape through the membrane holes (Figure 3.24, A). The fraction lysed with TX-

100 contained some ubiquitinated RIP1 and TNFR1. Notably, large amounts of 

ubiquitinated TNFR1 were present in non-stimulated samples from both wild type and 

HOIP-KO cells. Interestingly, these conjugates were of similar size of around 100kDa 

but disappeared upon stimulation with TNF (Figure 3.24, A). Analysis of the TX-100 

insoluble fraction by SDS lysis revealed a striking accumulation of ubiquitinated 

proteins. RIP1 and TNFR1 were heavily ubiquitinated and linear ubiquitin chains 

could be detected in the same fraction of wild type cells. In line with previous 

observations (Figure 3.23), the ubiquitination of TNFR1 was much lower in HOIP-

deficient cells, whereas the ubiquitination of RIP1 was comparable to that of wild type 

cells. 

To test whether the observations made in HeLa cells were also reproducible in a 

different cell line, a similar experiment was conducted in A549 cells. Surprisingly, 

ubiquitinated proteins were much less fractionated in these cells (Figure 3.24 B). A 
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significant portion of ubiquitinated RIP1, TNFR1 and M1-linked ubiquitin chains was 

detected in the TX-100 fraction but also in the TX-100 insoluble fraction. Interestingly, 

proteins isolated from the SDS fraction showed a different ubiquitination pattern which 

was generally shifted towards a higher molecular weight. Furthermore, M1-linked 

chains accumulated over time in the SDS fraction, whilst they decreased in the TX-

100 fraction. In summary, ubiquitinated proteins accumulate in a Triton X-100-

insoluble fraction which can be retrieved by lysis in SDS. 

 

Figure 3.24: Ubiquitinated proteins are found in TX-100 insoluble fractions   

(A) TNFR1-SC components are not fully soluble in a 1% Triton X-100-based buffer but can be 

extracted by lysing in 1%SDS. HeLa cells were stimulated with 200ng/ml TNF for the indicated 

time. First, cells were lysed in lysis buffer containing 0.1% Saponin. After centrifugation, the 

lysate was collected and the pellet was resuspended in 1% Triton X-100 lysis buffer and 

insoluble proteins were pelleted by centrifugation. After removal of the supernatant, the 

remaining pellet was lysed in 1% SDS and sonicated. Samples were then adjusted to 0.1% 

SDS concentration and cleared by centrifugation. Supernatants were then subjected to Ubi-

AP and analysed by western blot. (B) A549 were stimulated with 200ng/ml TNF for the 

indicated time, lysed in 1% Triton X-100 lysis buffer and insoluble proteins were pelleted by 

centrifugation. After removal of the supernatant, the remaining pellet was lysed in 1% SDS 

and sonicated. Samples were then adjusted to 0.1% SDS concentration and cleared by 

centrifugation. Supernatants were then subjected to Ubi-AP and analysed by western blotting. 
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3.5.2 Ubiquitinated TNFR1-SC proteins can be extracted by lysis in SDS 

Since SDS denatures protein structures, it was possible that lysis in 1%SDS simply 

enables better binding of the ubiquitin-binding protein used in the Ubi-AP by making 

the ubiquitin chains more accessible. To test for this possibility, U937 cells were 

stimulated with TNF and lysed in TX-100 buffer. The lysate was collected, split in two 

tubes, and the insoluble fraction removed by centrifugation. One sample was 

denatured with 1% SDS before diluting it down to 0.1% final concentration of SDS 

(TX-100SDS). The second sample was just topped up to the same volume with 

lysis buffer (TX-100). The cell pellet containing the TX-100-insoluble fraction, which 

was left from the initial lysis, was resuspended in 1% SDS buffer, sonicated and 

diluted to 0.1% SDS before centrifugation. All samples were then subjected to Ubi-

AP. Analysis of these samples by western blotting showed no difference between TX-

100 lysis and samples that were additionally denatured in 1% SDS prior to Ubi-AP 

(Figure 3.25) However, as seen in HeLa cells (Figure 3.24, A), SDS-lysis of the TX-

100 insoluble fraction retrieved ubiquitinated TNFR1, RIP1 and M1-linked ubiquitin 

chains (Figure 3.25). This shows that the observed enrichment of ubiquitinated 

proteins in a TX-100 insoluble fraction is not due to improved Ubi-AP from denatured 

samples. 
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Figure 3.25: Denatured proteins are not more efficiently enriched by Ubi-AP   

Superior enrichment of ubiquitinated proteins, following TNF stimulation, extracted by SDS 

lysis is not due to better binding of denatured proteins to ubiquitin binding domains. U937 cells 

were stimulated with 200ng/ml TNF for 15 minutes. Cells were lysed and cleared by 

centrifugation and split in two tubes. Subsequently, one sample was denatured with SDS. The 

remaining cell pellet was directly resuspended in SDS buffer. Samples were adjusted to the 

same volume so that the SDS concentration is 0.1% in all samples. Ubi-AP was performed 

and analysed by western blotting. 

 

3.6 LUBAC-deficiency sensitises cells to cell death 

The molecular basis for the sensitisation of LUBAC-deficient cells to TNF-induced cell 

death is poorly understood. In case of TNF-induced cell death, destabilisation of 

complex I, due to insufficient complex I modification in absence of HOIP, was 

suggested to facilitate the formation of complex II. To study TNF-induced cell death 

in HOIP-deficient cells in more detail, HeLa WT and HOIP-KO cells expressing RIP3 

were generated. HeLa cells do not express RIP3 and are therefore resistant to 

necroptosis-inducing stimuli (Li et al., 2012). HeLa-RIP3 cells were stimulated with 

different combinations of TNF (T), zVAD (Z), SM-83 (S) or Nec1-S (Nec). SM-83 is a 

SMAC mimetic which efficiently leads to depletion of cIAPs by triggering their auto-
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ubiquitination with K48-linked chains, leading to their proteasomal degradation (Lecis, 

De Cesare et al., 2013). Cell death, represented by uptake of propidium iodide, was 

measured by flow cytometry. As expected, HeLa cells were resistant to TNF but also 

to necroptosis induction by T+Z+S (Figure 3.26). However, expression of RIP3 

strongly sensitised HeLa cells to T+Z+S but also to the apoptotic stimuli T+S. In 

contrast, HOIP-deficient HeLa cells already showed mild sensitivity to TNF-induced 

cell death and showed increased sensitisation to T+S-induced cell death compared 

to HeLa wild type. Strikingly, expression of RIP3 in HOIP-deficient cells lead to a 

dramatically increased sensitisation to TNF alone (Figure 3.26). Interestingly, these 

cells also succumbed to T+Z treatment without the need for cIAP-depletion by SM-

83. Cell death induced by T+Z+S was blocked by Nec1-S, indicating that necroptosis 

was responsible for the cell death. This result shows that HOIP-deficiency leads to 

sensitisation to both apoptosis and necroptosis and mimics cIAP1/2-deficiency. 

 

Figure 3.26: HOIP-deficiency sensitises cells to necroptosis and apoptosis   

HOIP-deficiency mimics cIAP-deficiency and sensitises HeLa cells to TNF-induced apoptosis 

and, when RIP3 is present, to necroptosis. HeLa wild type (WT) or HOIP-KO cells were stably 

transfected with vector control or RIP3. Cells were stimulated with 200ng/ml TNF with the 

indicated inhibitors. After 24 hours, cell death was determined as % PI-positive cells by flow 

cytometry. Data from three biological replicates are presented as mean ± SEM. 

 

At this stage, it was not clear whether the necrosome formation or activity is increased 

in HOIP-deficient HeLa-RIP3. The necrosome was therefore isolated from WT and 

HOIP-deficient cells by strep-affinity purification of tagged RIP3 and tested for 
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associate factors by western blotting (Figure 3.27). Because the necrosome is largely 

insoluble in conventional Triton-X100 lysis buffer, proteins in the pellet resulting from 

the first lysis step were further solubilised in 0.1% SDS and sonicated. RIP3 was 

immunopurified from both separate fractions. Analysis of the samples revealed a 

substantial increase in necrosome formation in HOIP-deficient cells (Figure 3.27). 

Moreover, association of RIP1, TRADD and FADD with RIP3 was readily observed in 

the Triton-X100-insoluble fraction of HOIP-deficient cells but not in wild type cells. 

Hence, HOIP is required to prevent cell death upstream of necrosome formation. 

 

Figure 3.27: Necrosome formation is enhanced in HOIP-deficient cells     

In absence of HOIP, the formation of the necrosome, consisting at least of TRADD, FADD, 

RIP3 and RIP1, is increased. Control and HOIP-deficient HeLa cells, stably expressing FLAG-

Strep-tagged (TAP-tag) RIP3, were incubated with a combination of 200ng/ml TNF and 20μM 

zVAD for 6 hours. Subsequently, cells were lysed in IP-buffer containing 1% Triton-X100 and 

lysates were cleared by centrifugation. The supernatant was collected and the pellet 

resuspended in IP-buffer supplemented with 0.1% SDS, sonicated and cleared by 

centrifugation. Both fractions were subjected to affinity purification of TAP-tagged RIP3 using 

StrepTactin beads. Samples were analysed by western blotting. 
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3.7 Functional analysis of CYLD-deficiency on TNFR1 signalling 

CYLD was suggested to negatively regulate K63-ubiquitination of various TNFR1-SC 

components (Kovalenko et al., 2003, Moquin et al., 2013). The constitutive interaction 

of CYLD with HOIP suggests that CYLD could also negatively regulate M1-ubiquitin 

chains. 

 

3.7.1 Deficiency in CYLD leads to increased TNFR1-SC ubiquitination 

To test the effect of CYLD on M1-and K63-ubiquitinated proteins, ubiquitin-AP was 

used to isolate these proteins from TNF-stimulated wild type or CYLD deficient A549 

cells. Analysis of these samples showed that in absence of CYLD the ubiquitination 

of the LUBAC targets RIP1, TRADD and TNFR1 are markedly increased (Figure 

3.28). Although the ubiquitination of cIAP1/2 also drastically increased in CYLD-

deficient cells, the ubiquitination was already elevated prior to stimulation with TNF. 

Importantly, the total amount of M1-ubiquitination was also increased in CYLD 

deficient cells (Figure 3.28). This indicates that CYLD indeed counteracts M1-

ubiquitination of TNFR1-SC components, in addition to the previously reported K63-

ubiquitination. 
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Figure 3.28: CYLD inhibits K63- and M1- ubiquitination of the TNFR1-SC   

The comparison of M1- and K63-AP from wild type or CYLD-deficient A549 cell lysates 

demonstrates are marked increase in ubiquitinated TNFR1, TRADD, RIP1, cIAP1/2 and 

overall M1-ubiquitination in CYLD-deficient cells. Wild type and CYLD-deficient A549 cells 

were stimulated with 200ng/ml TNF for the indicated time. Cells were lysed and subjected to 

M1- and K63-AP and analysed by western blot. 

 

3.7.2 CYLD can remove linear- and other ubiquitin linkages from proteins 

Having identified a group of proteins which are modified with linear ubiquitin chains, 

the question was whether CYLD could indeed be responsible for removal of these 

modifications. Purified linearly-ubiquitinated proteins were therefore incubated with 

recombinant CYLD-USP, the active domain of CYLD. Western blot analysis of these 

samples showed a decrease in the molecular weight of TNFR1, TRADD and RIP1 



3. Results 

107 
 

(Figure 3.29). This was accompanied by complete removal of M1-linked ubiquitin 

chains. This shows that CYLD can remove and degrade linear ubiquitin chains from 

endogenously modified proteins. 

 

Figure 3.29: CYLD cleaves linear and other ubiquitin chains from LUBAC targets  

Recombinant CYLD USP domain can effectively remove ubiquitination and linear 

ubiquitination from TNFR1, TRADD and RIP1 in an in vitro assay. U937 cells were stimulated 

with 200ng/ml TNF for 30 minutes or left untreated. M1-AP was performed and subjected to 

in vitro deubiquitination by addition of 1µM recombinant CYLD USP and/or vOTU and 

incubation for one hour. Samples were analysed by western blotting. 
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3.7.3 NEMO ubiquitination is increased in HOIP-N102A expressing cells 

NEMO is crucial for the activation of the canonical NF-B pathway (Rudolph et al., 

2000). The activation of NEMO is accompanied by its ubiquitination, which also 

involves linear ubiquitination (Tokunaga et al., 2009). CYLD influences M1- and K63-

ubiquitination of TNFR1-SC components (Figure 3.29), but it was unclear whether the 

interaction of HOIP with CYLD or OTULIN was required to regulate NEMO 

ubiquitination. To analyse this question, HOIP-deficient HeLa cells were reconstituted 

with HOIP that is either wild type (WT), enzymatically inactive (CS), or unable to bind 

to SPATA2/CYLD and OTULIN (NA). Following TNF stimulation and 

immunoprecipitation of NEMO, an increased amount of ubiquitinated NEMO could be 

observed comparing HOIP-WT to HOIP-NA expressing cells (Figure 3.30). In accord, 

NEMO, derived from cells which are devoid of HOIP or express inactive HOIP-CS, 

lacks this ubiquitination. 

 

 

Figure 3.30: Ubiquitination of NEMO is increased in HOIP-N102A cells   

By abrogating the interaction of OTULIN and SPATA2/CYLD with HOIP, through mutation of 

HOIP N102 to Ala, the ubiquitination NEMO is increased. HOIP-KO HeLa cells were virally 

reconstituted with either wild type, enzymatically inactive (CS) or N102A (NA) HOIP. Cells 

were stimulated with 200ng/ml TNF and subjected to immunoprecipitation of NEMO. Resulting 

samples were probed for NEMO by western blotting. 
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al., 2006, Zhang et al., 2006). Based on the inhibitory effects on ubiquitination in 

previous experiments (Figures 3.28-30), it was likely that CYLD deficiency enhances 

TNF-induced gene activation. Surprisingly, however, TNF stimulation of CYLD-

deficient HeLa cells showed only minor differences in activation of NF-B compared 

to control cells (Figure 3.31). In contrast, the activation of JNK was slightly enhanced. 

In accordance, loss of SPATA2 had no significant effect on the activation of NF-B 

but slightly enhanced the activation of JNK. Taken together, absence of CYLD, or 

lack of CYLD recruitment by deletion of SPATA2, results in a slight enhancement of 

MAPK activation whilst the effect on NF-B activation is limited. 

 

 

Figure 3.31: Lack of CYLD/SPATA2 only mildly affects gene activatory pathways  

HNeither absence of SPATA2 or CYLD has a profound effect on the phosphorylation or 

degradation of IB whereas the phosphorylation of JNK is slightly increased. HeLa cells, 

pro- or deficient in CYLD, were transfected with control or SPATA2-targeting siRNA. The cells 

were stimulated with 200ng/ml TNF for the indicated times, lysed and analysed by western 

blot. 
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CYLD-deficient cells and again increased MAPK signalling (Figure 3.32, B). This 

shows that in TNF-signalling, deficiency in CYLD has minor effects on NF-B but 

increases JNK activation. In NOD2 signalling, however, deficiency in CYLD indeed 

increases NF-B activation, but also MAPK signalling. The potential of CYLD to 

modulate gene activation might therefore be pathway-dependent. 

 

Figure 3.32: CYLD supresses gene activatory pathways in BMDMs     

(A) CYLD-deficient BMDMs show normal IB phosphorylation and degradation but have 

slightly enhance phosphorylation of p38 and JNK in response to TNF. Bone marrow-derived 

macrophages were isolated from wild type or CYLD-deficient litter mates. Cells were 

stimulated with 200ng/ml TNF for the indicated time. Lysates were analysed by western blot. 

(B) CYLD-deficient Cells show increased NF-B and MAPK signalling in response L18-MDP. 

BMDMs were prepared as in (A), stimulated with 200ng/ml L18-MDP and analysed by western 

blot. 
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In addition to the involvment of CYLD in the regulation of gene activation, CYLD was 

also shown to regulate cell death by promoting the formation of the death-inducing 
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SPATA2, thus functionally increasing the inhibitory effect on the induction of cell death 

(Figure 3.33, B). Hence, SPATA2 is required for CYLD to elicit its death-promoting 

function in TNF-induced necroptosis. 

 

Figure 3.33: SPATA2 or CYLD deficiency reduces TNF-induced necroptosis   

(A) Both the knockdown of CYLD or SPATA2 supress necroptosis induced by treatment with 

TNF+zVAD in L929 cells. Expression of SPATA2 or CYLD was reduced by transfection of 

siRNA. Two days after transfection, cells were treated with 200ng/ml TNF, TNF+zVAD [30µM] 

or TNF+zVAD and the necroptosis inhibitor NEC-1S [10µM] for 16h. Cell death was quantified 

by uptake of propidium iodide and measured by FACS analysis. Data from biological replicates 

are presented as mean ± SEM [n = 3], ** p < 0.01, statistics were performed using t test).  

(B) As seen in CYLD-KO cells, also the knockdown of CYLD reduces SPATA2 protein level. 

Representative western blot result of the knockdown efficiency of CYLD and SPATA2 in L929 

cells used in (A). 

 

3.8 A20 recruitment and its involvement in TNFR1-SC regulation 

A20 was implicated to function as a negative regulator of TNF-signalling due to its 

deubiquitinase activity (Wertz et al., 2004). However, the inhibitory effect of A20 also 

requires zinc finger 7 (ZF7), which specifically binds to linear ubiquitin chains 

(Tokunaga et al., 2012, Verhelst et al., 2012, Yamaguchi, 2015). This links A20 to 

LUBAC and it was likely that their function is in part dependent on each other. 
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3.8.1 A20 is recruited to the TNFR1-SC in a HOIP dependent manner 

The mechanism for A20 recruitment to the TNFR1-SC was not clear but A20’s ZF7, 

which can bind to M1-linked ubiquitin chains, is involved in this process (Tokunaga et 

al., 2012). Hence, it is possible that LUBAC is required for the recruitment of A20 to 

the TNFR1-SC. To test this possibility, the TNFR1-SC was isolated from wild type 

and HOIP-deficient A549 cells and A20 recruitment was analysed (Figure 3.34). 

Because A20 protein levels are low in basal condition, a three-hour time point was 

included to allow for TNF-induced upregulation of A20 expression. Strikingly, A20 was 

not recruited to the TNFR1-SC in absence of HOIP (Figure 3.34). Importantly, both 

early and late recruitment of A20 was fully dependent on LUBAC. Furthermore, the 

recruitment of A20 correlates with increasing amounts of linear ubiquitination. This 

demonstrates that LUBAC is required for the recruitment of A20 to the TNFR1-SC. 

 

 

Figure 3.34: Recruitment of A20 to the TNFR1-SC depends on HOIP    

TNFR1-SC analysis of wild type and HOIP-KO A549 cells demonstrates that recruitment of 

the deubiquitinase A20 to the TNFR1-SC is dependent on HOIP. A549 cells pro- or deficient 

in HOIP were stimulated with 1 μg/ml FLAG-TNF for 0, 0.5 and 3 hours. Cells were washed 

with PBS, lysed in IP-buffer and the TNFR1-SC was purified using anti-FLAG M2 beads. 

Samples were then analysed for the recruitment of A20 and analysed by western blotting. 
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3.8.2 Linear ubiquitin chains are reduced in A20-deficient cells 

Next, A20-deficient cells were generated to analyse the effect of A20-deficiency on 

the ubiquitination of signalling complex components. Because A20 was reported to 

be able to hydrolyse K63- and K48-linked ubiquitin chains, it was possible that the 

ubiquitination of A20 substrates is enhanced in absence of A20. However, M1- and 

K63-AP revealed a significant loss of TNFR1 ubiquitination, while the ubiquitination 

of RIP1 remained unchanged (Figure 3.35). The ubiquitination of TRADD was also 

slightly reduced as seen by the increase in smaller ubiquitinated forms of TRADD. In 

line with the reduced ubiquitination of TRADD and TNFR1, linear ubiquitination, which 

was stable in wild type and A20-ctrl A549 cells for 3h, was reduced in A20-deficient 

and A20-ΔZF2-7 cells. Conclusively, lack of A20 leads to a destabilisation of linear 

ubiquitination and strong reduction of TNFR1 ubiquitination. 

 

 

Figure 3.35: Absence of A20 leads to reduction of M1-ubiquitination    

A549 cells in which A20 was targeted using CRISPR/Cas9 to either delete expression of ZF2-

7 (A20-ΔZF2-7), or delete A20 expression by targeting exon 1 (A20-KO), show reduced M1-

ubiquitination and reduced TNFR1 ubiquitination in response to TNF. Cells were stimulated 

with 200ng/ml TNF for 3h. Cells were then lysed and subjected to M1- and K63-AP and 

analysed via western blot. 
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3.8.3 Absence of A20 also decreases linear ubiquitination in the NOD2-SC 

A20 was suggested to also regulate NOD2-signalling (Hitotsumatsu et al., 2008). 

Because absence of A20 had a marked effect on linear ubiquitination on the LUBAC 

substrate TNFR1 in TNF-signalling, ubiquitination of the NOD2-SC components RIP2 

and XIAP were also analysed in absence of A20 (Figure 3.36). In line with the 

observations made for the TNFR1-SC, linear-ubiquitination of both LUBAC substrate 

was reduced in cells deficient for A20 or carrying a deletion of ZF2-7 (A20-ZF2-7) 

(Figure 3.36). This shows that also in NOD2-signalling A20 has a stabilising effect on 

linear ubiquitination. 

 

 

Figure 3.36: A20-deficiency reduces M1 ubiquitination of the NOD2-SC    

A549 control cells, and cells in which A20 or A20’s ZF2-7 were deleted using CRISPR/Cas9, 

were virally reconstituted with FLAG-NOD2 and show reduced ubiquitination of XIAP and the 

LUBAC substrate RIP2 in response to L18-MDP stimulation. Cells were stimulated with 200 

ng/ml L18-MDP for 1 hour. M1-ubiquitinated proteins were affinity purified by M1-AP and 

analysed by western blot. 
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3.8.4 Presence of A20 supresses gene activatory signalling 

Because A20 possesses DUB-activity, it was suggested that A20 supresses gene 

activation by deubiquitinating components of the TNFR1-SC (Wertz et al., 2004). 

However, based on the result presented in Figure 3.35, it is likely that A20’s function 

is independent of its DUB-activity. A20-deficient MEFs were therefore reconstituted 

with A20 or A20-C103S, which lacks deubiquitinating activity. A20-deficient MEFs 

show rapid activation of NF-B following TNF stimulation (Figure 3.37). Re-

expression of A20 but also inactive A20-C103S reduced phosphorylation and 

degradation of IB. This indicates that the inhibitory effect of A20 on NF-B 

signalling is independent of its deubiquitinating activity. 

 

 

Figure 3.37: A20 supresses NF-B activation independently of its DUB activity   

A20-deficient MEFs were virally reconstituted with vector control, A20, or enzymatically 

inactive A20-C103S. Cells were stimulated with 200ng/ml TNF for the indicated time and 

phosphorylation and degradation of IB by western blotting. 
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cells (Figure 3.38, B). This effect was rescued by re-expression of A20 but also 

inactive A20-C103S. Strikingly, A20-ZF7mut, which is unable to bind to linear ubiquitin 

was unable to restore resistance (Figure 3.38, B). This shows that ZF7 of A20, and 

not its enzymatic activity, is required and sufficient to inhibit TNF-induced cell death. 

 

 

Figure 3.38: A20 mediates resistance to TNF-induced cell death via its ZF7   

(A) Wild type and enzymatic inactive A20, but not A20-ZF7mut, are recruited to the TNFR1-SC 

and normalise linear ubiquitin chain levels in the complex. MEFs deficient for A20 were 

reconstituted with either vector, A20, DUB-inactive A20 C103S (A20-CS) or A20-ZF7mut. Cells 

were stimulated for 15 minutes with FLAG-TNF (500 ng/ml) and subjected to TNF-RSC 

purification. A20 recruitment and M1-ubiquitination was analysed by western blot   

(B) TNF+zVAD-induced necroptosis observed in A20-deficient cells can be prevented by 

expression of either wild type A20 or enzymatic inactive A20-C103S, but not by expression of 

A20-A20-ZF7mut. Cells, as described in (A), were stimulated with 200 ng/ml TNF and the 

indicated inhibitors and cell death was evaluated after 24h as percentage of propidium iodide 

positive cells (data are presented as mean ± SEM [n = 3], * p < 0.05, statistics were performed 

using t test). 
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4 Discussion 

 

4.1 LUBAC constitutively associates with SPATA2/CYLD or OTULIN 

The constitutive interaction of LUBAC with two DUBs was a surprising finding (Draber 

et al., 2015, Takiuchi, Nakagawa et al., 2014). The fact that OTULIN is remarkably 

efficient and specific in cleaving linear ubiquitin chains points towards a specialist 

function strongly linked to LUBAC. Other studies have reported a marked increase of 

linear ubiquitin chains in cell that are OTULIN-deficient (Keusekotten et al., 2013, 

Rivkin et al., 2013), which was also observed in this study. However, an increased 

M1-ubiquitination was already present prior to stimulation with TNF and ubiquitination 

of TNFR1-SC components did not change significantly or was reduced (Figure 3.17, 

A) (Draber et al., 2015). It is therefore not clear which proteins are modified with 

additional linear ubiquitin chains in absence of OTULIN, apart from LUBAC itself. It is 

likely that LUBAC substrates in other homeostatic pathways (e.g. DNA repair) exist, 

which accumulate linear ubiquitin chains because of OTULIN deficiency. In line with 

this theory, M1-AP can reveal basal levels of M1-ubiquitination (Figure 3.21) and 

overexpression of catalytic inactive OTULIN stabilised these linear ubiquitin 

modifications (Figure 3.13), suggesting that LUBAC is also active in other pathways 

yet to be discovered. An approach to identify these targets might therefore be to 

enrich for these M1-modified proteins from non-stimulated OTULIN-deficient cells, 

using M1-AP followed by mass spectrometry. Alternatively, linear ubiquitin could 

serve as bait for ubiquitin binding molecules which are involved in these unknown 

pathways. In both cases, these experiments are likely to identify novel factors 

associated with linear ubiquitination. One group of proteins affected by absence of 

OTULIN are LUBAC components themselves, which show a marked increase in 

ubiquitination (Figure 3.17, B). This suggests that OTULIN acts in particular on 

LUBAC, which possibly undergoes auto-ubiquitination as observed for other E3 

ligases (de Bie & Ciechanover, 2011). Auto-ubiquitination of LUBAC might interfere 

with its function and OTULIN acts as a dedicated DUB to keep LUBAC functional, 

independently of signalling complexes. This idea is supported by the observation that 

OTULIN-deficient cells showed reduced ubiquitination of RIP1 in the TNFR1-SC and 

RIP2 in the NOD2-SC (Draber et al., 2015). It is intriguing to speculate that the auto-

ubiquitination of LUBAC might represent a shut-off mechanism following its 

recruitment to signalling complexes, especially when considering that OTULIN does 

not form of signalling complexes and would therefore be unable to counteract this 

process. Interestingly, one study reported a dramatic increase in linear ubiquitination 
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of HOIP in absence of OTULIN but not in absence of CYLD (Hrdinka, Fiil et al., 2016). 

This further supports the theory that CYLD functions as a negative regulator of 

LUBAC in signalling complexes but not under basal conditions. OTULIN on the other 

hand is clearly required to prevent accumulation of linear ubiquitination of LUBAC 

substrates but also on LUBAC itself. Due to the efficiency of OTULIN in hydrolysing 

M1-linked ubiquitin chains, it may in fact be necessary to exclude OTULIN from SCs 

to allow for efficient linear ubiquitination in the first place. 

The reason for absence of OTULIN from signalling complexes is still not fully 

understood. However, it was shown that at least two distinct pools of LUBAC exist; 

one is associated with OTULIN and another one with SPATA2/CYLD (Draber et al., 

2015). As SPATA2 and OTULIN bind to the same motif in the PUB domain of HOIP, 

the binding of the two is mutually exclusive (Elliott, Leske et al., 2016, Kupka et al., 

2016a). Phosphorylation of the PIM in OTULIN at Y56 was suggested as a possible 

mechanism to prevent its interaction with HOIP (Elliott et al., 2014, Schaeffer et al., 

2014). One possible mechanism could therefore be that the PIM of OTULIN becomes 

phosphorylated following activation of TNF-signalling, whilst the PIM in SPATA2 is 

not. Indeed, a search on the phosphoproteomics database 

http://www.phosphosite.org/ revealed no record of SPATA2 PIM phosphorylation. 

Phosphorylated OTULIN PIM was found in basal conditions but evidence that 

OTULIN is phosphorylated following TNF stimulation is still missing. It will therefore 

be essential to identify the tyrosine kinase responsible for phosphorylation of OTULIN 

and how it is activated. This kinase could even be membrane associated and not form 

part of the TNFR1-SC directly. Thus, only recruited OTULIN would be 

phosphorylated, which might explain why only minute amounts of OTULIN were found 

to be phosphorylated. Alternatively, LUBAC’s association with OTULIN might impose 

a form of steric hindrance, thus blocking LUBAC recruitment to the signalling complex. 

The DUB-activity of OTULIN, however, does not influence its recruitment (Figure 

3.15) and inactive LUBAC also does not recruit OTULIN to SCs, thus excluding a 

regulation by linear ubiquitination. It is interesting to note that the CYLD/SPATA2 and 

HOIP interact in a 2:2 ratio because CYLD forms dimers via a homotypic Bbox 

interaction (Elliott et al., 2016). The dimer formation may increase LUBAC’s avidity 

for binding to ubiquitinated TNFR1-SC components. A dimer formation involving 

OTULIN has not been reported so far and this could be the reason why LUBAC bound 

to OTULIN is not efficiently recruited to the TNFR1-SC. Once the underlying 

mechanism has been clarified, it may be possible to alter OTULIN regulation and 

allow its recruitment to SCs. One possibility could be to exchange the PIM in OTULIN 
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with the one found in SPATA2, to see whether PIM phosphorylation indeed is the 

reason for absence of OTULIN from SCs. 

 

4.2 Recruitment of CYLD to signalling complexes via LUBAC 

The recruitment mechanism of CYLD to signalling complexes remained elusive and 

several factors like NEMO, TRAF2 and Optineurin have been suggested to be 

involved in this process (Kovalenko et al., 2003, Nagabhushana, Bansal et al., 2011). 

Absence of these previously suggested factors did however not completely prevent 

CYLD recruitment to the TNFR1-SC. Strikingly, absence of HOIP completely 

abolished recruitment of CYLD to signalling complexes (Draber et al., 2015). 

Constitutive interaction of LUBAC with CYLD leads to a co-recruitment of CYLD to 

the signalling complexes that were analysed in this study. It therefore seems likely 

that HOIP-mediated CYLD recruitment to signalling platforms represents a general 

mechanism. Other pathways that are known to employ LUBAC (e.g. CD40, TLR3 or 

IL-1R) might therefore potentially be regulated by CYLD. Vice versa, it will be 

necessary to evaluate the involvement of LUBAC in pathways that were suggested 

to be regulated by CYLD (e.g. RANK signalling or Bcl3-dependent NF-B activation 

(Jin, Chang et al., 2008, Massoumi et al., 2006). 

In contrast to OTULIN, the interaction of CYLD with HOIP is indirect and mediated by 

SPATA2 (Elliott et al., 2016, Kupka et al., 2016a, Schlicher, Wissler et al., 2016, 

Wagner, Satpathy et al., 2016). Little is known about the function of SPATA2. Early 

studies identified SPATA2 to be potentially involved in spermatogenesis, due to its 

high expression in testis and strong upregulation during spermatogenesis (Onisto, 

Slongo et al., 2001). It is interesting to note that CYLD-deficient mice also have been 

reported to have defects in spermatogenesis (Wright, Reiley et al., 2007). Although 

CYLD-deficient mice show no overt phenotype, apoptotic cell death can be detected 

in germ cells. The authors attributed this to increased gene activation, leading to an 

upregulation of anti-apoptotic proteins which prevents the early wave of germ cell 

apoptosis (Wright et al., 2007). Early wave germ cell apoptosis is a necessary event 

to maintain tissue homeostasis. Defective early apoptosis therefore leads to 

increased apoptosis in a later stage during spermatogenesis. The function of SPATA2 

during spermatogenesis has not been analysed but, considering the results obtained 

in this study, it is likely that loss of SPATA2 results in a functional deficiency of CYLD. 

It will also be interesting to analyse which pathway delivers the apoptotic stimulus. By 

crossing CYLD or SPATA2 deficient mice to e.g. TNF-deficient mice, the contribution 
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of death ligands could be analysed. The discovery of SPATA2 as a crucial molecule 

for CYLD recruitment to signalling complexes may also provide some new insight for 

studies of Brooke-Spiegler syndrome, familial cylindromatosis or multiple familial 

trichoepitheliomas. Patients which present with the respective phenotypes, but do not 

have a mutation in CYLD, should be analysed for mutations in the SPATA2 gene. 

It was shown that SPATA2, in addition to enabling the binding of CYLD to HOIP, 

increases CYLD activity by binding to its USP domain (Elliott et al., 2016, Schlicher 

et al., 2016). It is not clear whether CYLD is recruited to or functions without SPATA2 

in other signalling complexes but it must be assumed that without SPATA2, CYLD 

activity will be compromised. Alternatively, different adaptors might exist which fulfil a 

similar function as SPATA2. For instance, SPATA2-like (SPATA2L) was also 

identified as a constitutive interaction partner of CYLD (Sowa, Bennett et al., 2009). 

As SPATA2 is required and sufficient for recruitment of CYLD to the TNFR1- and 

NOD2-SC, SPATA2L is not involved in these complexes. However, analysis of 

signalling complexes which are regulated by CYLD should also be tested for the 

involvement of SPATA2, SPATA2L or other potential adaptors. 

Absence of CYLD leads to a reduction in SPATA2 protein level (Figure 3.5). A similar 

observation was made in a different study (Elliott et al., 2016). At this stage, it is 

unclear whether this is the result of reduced translational level or whether SPATA2 

protein stability is directly regulated by CYLD. Since CYLD is a deubiquitinase, it is 

tempting to speculate that SPATA2 is subject to ubiquitination which in turn might 

lead to its proteasomal degradation. Though no ubiquitinated SPATA2 was detected 

in this study, it may be required to inhibit the proteasomal pathway to stabilise any 

short-lived modification. An alternative explanation might be that CYLD stabilises the 

conformation of SPATA2. By creating SPATA2 point mutants unable to interact with 

HOIP and/or CYLD, the contribution of each protein to the observed effects could be 

analysed. 

 

4.3 TNFR1 and TRADD are LUBAC substrates 

Shortly after the identification of LUBAC as part of the TNFR1-SC, RIP1 and NEMO 

were identified as LUBAC substrates (Gerlach et al., 2011, Ikeda et al., 2011). 

However, these experiments were 2D-gel and mass spectrometry based and required 

large quantities of M1-modified protein for reliable detection. In this study, the M1-

ubiquitin enrichment strategy in combination with ubiquitin linkage-specific DUBs led 

to the identification of TRADD and TNFR1 as previously unrecognised LUBAC 
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substrates (Figure 3.21). This method requires less cell material and allows for a 

sensitive analysis which can be adapted to various signalling pathways and proteins. 

However, it is noteworthy that NEMO could not be identified as a M1-modified protein 

with this assay (data not shown). The reason for this is not clear but the examination 

of the total ubiquitination of NEMO suggests that only a minute fraction of NEMO is 

modified with polyubiquitin chains, while a large portion is modified by mono-

ubiquitination (Figure 3.30). A different study made a similar conclusion and 

demonstrated that NEMO is largely modified with K63-linked chains (Emmerich et al., 

2013). Hence, detection of linear ubiquitin chains attached to NEMO may require 

several folds more sample for sufficient detection than e.g. RIP1. However, this 

finding also demonstrates that TNFR1 and TRADD are modified quantitatively more 

with M1-linked ubiquitin chains than NEMO and RIP1. By performing ubiquitin chain 

profiling, another study later described additional K63- and K11-ubiquitination of 

TNFR1 (Emmerich et al., 2016). The role of TNFR1 ubiquitination remains, however, 

elusive. Considering the longevity of linear ubiquitination, these chains could function 

as a regulatory signal coordinating recycling/degradation of activated SCs. Notably, 

it was suggested that K63-ubiquitination of TNFR1 enables receptor internalisation, 

which is required for induction of cell death (Fritsch, Stephan et al., 2014). However, 

this theory is not supported by the finding that lack of A20, which also leads to a 

selective loss of ubiquitination of TNFR1 (Figure 3.35), still sensitised to TNF-induced 

cell death (Figure 3.38). Considering that also LUBAC-deficiency leads to a dramatic 

reduction in TNFR1 ubiquitination (Figure 3.23), it seems more probable that 

ubiquitination of TNFR1 prevents cell death. This may involve the recruitment of 

additional, maybe unidentified factors, to ubiquitin chains. Analysis of TNFR1 

ubiquitination revealed a strong ubiquitination in absence of any stimulus and was 

found in total- and K63-specific ubiquitin affinity purifications, but never in M1-APs 

(Figures 3.22, 3.23). Strikingly, the pre-stimulation ubiquitination pattern completely 

disappeared upon binding of TNF (Figure 3.24). Notably, ubiquitination of TNFR1 

prior to stimulation was readily solubilised by TX-100 and absent from the TX-100-

insoluble fraction. This contrasts with the activated form of TNFR1. TNFR1 was found 

to shuttle between cholesterol-rich membrane micro-domains and the trans-Golgi 

network (D'Alessio, Esposito et al., 2012, Jones, Ledgerwood et al., 1999). The pre-

ubiquitinated TNFR1 may therefore be shuttling between the Golgi network and the 

membrane, but not membrane micro-domains, as they are characterised by TX-100 

insolubility (Mazzone, Tietz et al., 2006). The pre-ubiquitination could represent an 

additional sorting signal or allow for rapid recruitment of UBDs or provide a first set of 

ubiquitin modifications as a basis for e.g. linear ubiquitination by LUBAC. The 
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identification of the residues carrying this modification and the E3 modifying them will 

be paramount for the analysis. 

Western blot analysis showed that in HOIP-deficient cells, the overall ubiquitination 

of TNFR1 and TRADD is reduced to an extent that exceeds the amount of M1-linked 

ubiquitin chains that were attached to these proteins (compare Figure 3.21 to 3.23). 

This could potentially be explained by two different mechanisms: (i) linear ubiquitin 

chains, attached as branches on top of other chain types, may protect these chains 

from DUBs that are unable to cleave M1-linked ubiquitin chains. (ii) linear ubiquitin 

chains may function as additional binding platforms for other E3 ligases and LUBAC 

itself, which could further increase the ubiquitination of these proteins. Interestingly, 

the ubiquitination of RIP1 is seemingly unaffected by the absence of HOIP, which 

correlates with smaller amounts of M1-linked ubiquitin chains found on RIP1. To test 

the function of linear ubiquitination, proteins could be sequentially ubiquitinated with 

K63-linked chains and M1-linked chains, before subjecting them to an in vitro DUB 

assay. DUBs like A20 may be unable to cleave the K63-chain attached to the protein 

if these chains are additionally ubiquitinated with linear chains. First evidence to 

support this theory has recently been published (Wertz et al., 2015). Considering the 

drastic effect of HOIP deletion on the overall ubiquitination of TNFR1 and TRADD, it 

will be difficult to address whether linear ubiquitin chains act as specific binding 

platforms. Selective deletion of linear ubiquitin events would be necessary to preserve 

the general architecture of ubiquitin chains in the TNFR1-SC. Currently, no method 

has been found to reliably address this issue. 

Little is reported concerning the ubiquitination of TRADD. One study suggested that 

ubiquitination-dependent degradation of TRADD as a consequence of obstructive 

renal injury (Misaki, Yamamoto et al., 2009). However, this study analysed 

ubiquitination of TRADD in an overexpression system and failed to provide sufficient 

evidence for direct ubiquitination of TRADD, as no immunoblot staining for TRADD 

directly was provided. Here, TRADD was found to be modified by linear ubiquitin and 

other chain types and to form part of the necrosome (Figure 3.27). The function of 

these modifications is currently unknown. Residue K292 in TRADD is one of four 

lysines which are conserved between mouse and human. Because it is located in the 

DD of TRADD, it is tempting to speculate that ubiquitination of TRADD at K229 might 

regulate its ability to mediate induction of cell death by TNF. Because the death 

domain of TRADD is also engaged in binding to TNFR1, K292 may, however, not be 

accessible for E3s or only following its release from TNFR1. The other three 

conserved lysine residues K25, K38, K63 could therefore be more likely targets for 
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ubiquitination. As TRADD serves as an adaptor protein, its ubiquitination likely 

provides additional binding platforms for the recruitment of e.g. the TAB/TAK and 

NEMO/IKK complex. Like for TNFR1, identification of the modified lysines will be 

required to address the function of these modifications. 

 

4.4 Regulation of TNFR1-SC ubiquitination by CYLD, OTULIN and A20 

 

4.4.1 CYLD counteracts LUBAC function in signalling complexes 

The regulation of the TNFR1-SC by DUBs has been extensively studied in the past 

(Kupka, Reichert et al., 2016b). The identification of LUBAC as a main coordinator of 

DUB recruitment to SC changes the current view of signalling complex assembly and 

disassembly. However, many questions remain. The LUBAC-mediated recruitment of 

CYLD to signalling complexes seems counterintuitive. Why does LUBAC bring its 

own negative regulator into the complex? In theory, LUBAC and CYLD activity could 

reach equilibrium were ubiquitin chains are maintained at a certain level. However, 

because CYLD can also cleave K63-linked ubiquitin chains, and because K63-linked 

chains act as an anchor point for linear ubiquitin chains, CYLD-mediated 

deubiquitination should lead to termination of linear ubiquitination and disappearance 

of these chains. A time course analysis, however, revealed that the level of linear 

ubiquitination and protein ubiquitination in general, is quite stable even after three 

hours following TNF stimulation (Figure 3.34). A possible explanation could be the 

inactivation of CYLD after its recruitment. CYLD may therefore function as a gate-

keeper for ubiquitin-dependent signalling complex formation. Based on this theory, 

the recruitment of CYLD could counteract the full activation of the signalling complex 

until a critical threshold is reached. Only sufficient signalling complex formation would 

lead to inactivation of CYLD by e.g. phosphorylation, which would prevent accidental 

or suboptimal activation of the TNFR1-SC. An inhibitory phosphorylation of CYLD, 

mediated by IKK, was already described to promote cell transformation in breast 

cancer (Hutti et al., 2009). In accord, CYLD was found to exhibit a HOIP-dependent 

change in mobility in SDS-PAGE analysis following stimulation with TNF, which could 

be due to phosphorylation (Figure 3.8). A deeper analysis of the phosphorylation of 

CYLD will be required to characterise its role in TNFR1-SC ubiquitination and 

signalling. 
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4.4.2 Regulation of TNF signalling by OTULIN 

Despite the lack of OTULIN in SCs, it is still possible that it influences linear 

ubiquitination without the permanent interaction with HOIP. In one possible scenario, 

OTULIN dissociates from HOIP after being recruited to the SC by e.g. 

phosphorylation of the OTULIN PIM domain (Elliott et al., 2014, Schaeffer et al., 

2014). This would lead to an increased local concentration of OTULIN around the SC 

and allow OTULIN to freely move and trim linear ubiquitin chains. Mutation N102A in 

HOIP can be used to abrogate binding of OTULIN to LUBAC, but it also abolishes 

SPATA2 and, therefore, CYLD interaction. Hence, it is not possible to attribute the 

increase in linear ubiquitination to absence of either CYLD or OTULIN alone. A 

comparison of linear ubiquitination at the TNFR1-SC should be done by comparing 

SPATA2 PIM-mutant cells, which will lack HOIP/CYLD interaction, with OTULIN-

Y56A, which is unable to bind HOIP. Ideally, the point mutation in OTULIN should be 

obtained by gene editing, as overexpression of OTULIN might lead to unphysiological 

protein level, leading to artificial deubiquitination events. Nevertheless, linear 

ubiquitination of the TNFR1-SC increases over time and can still be detected several 

hours following stimulation. It therefore seems that linear ubiquitin chains are largely 

impervious to cleavage by DUBs under normal conditions. 
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Figure 4.1: Updated scheme of TNFR1-SC assembly and regulation by DUBs  

The interaction of CYLD, via SPATA2, with HOIP is required for its recruitment to the TNFR1-

SC. Once recruited, CYLD can antagonise M1- and K63-linked ubiquitin chains. Despite its 

direct interaction with HOIP, OTULIN is not recruited to SCs. A20 is recruited to linear 

ubiquitination chains via its ZF7. A20 negatively regulates gene activation, possibly by 

competing with factors like NEMO for binding to linear ubiquitin chains. A20 also stabilises 

linear ubiquitin chains and can block TNF-induced cell death. In contrast, CYLD suppresses 

gene activation, likely due to removal of ubiquitin chains from the complex. This also facilitates 

complex II formation and promotes cell death. 

 

4.5 HOIP-dependent recruitment of A20 

Linear ubiquitination was found to be required for recruitment of A20 into SCs (Draber 

et al., 2015). Over time, increasing amounts of M1-linked ubiquitin chains and NF-B-

mediated A20 expression leads to recruitment of A20 via its ZF7 (Figure 3.38) (Draber 

et al., 2015). A20 was early on identified, both in vitro and in vivo, as a negative 

regulator of NF-B signalling and inflammation (Evans et al., 2004, Lee et al., 2000). 

The precise role of A20 supressing gene activation is not fully understood. In addition 

to the OTU domain, which grants A20 its deubiquitinase activity, the seven zinc 

fingers were always of interest for subsequent studies. This is understandable as the 

OTU domain was shown to be dispensable for the survival function of A20 (Lu et al., 
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2013). It is therefore plausible to assume that A20 exhibits its regulatory effect 

passively by binding to ubiquitin chains. The inhibitory effect on NF-B could be the 

result of A20’s competition with other factors like NEMO/IKK for binding to linear 

ubiquitin chains, thus preventing a reactivation of NF-B signalling. Although mice 

lacking ZF4 were more susceptible to DSS induced colitis, like OTU-deficiency, the 

animals did not develop any phenotype in absence of a stimulus (Lu et al., 2013). 

Based on the results obtained in this thesis, one could speculate that it is ZF7 which 

mediates the survival function of A20. Firstly, A20-ZF7mut was unable to protect MEFs 

from TNF-induced cell death, while enzymatic inactive A20-C126S was fully 

preventing it (Figure 3.38, B). Secondly, cells lacking A20 or the zinc finger domains 

show diminished levels of linear ubiquitination and overall ubiquitination of TNFR1, 

which is consistent with increased susceptibility to TNF-induced cell death observed 

in HOIP-deficient cells. Because A20 requires linear ubiquitin chains for its 

recruitment (Figure 3.34) (Draber et al., 2015), but in turn also stabilises them, one 

can speculate that A20-binding to linear ubiquitin chains protects them from 

degradation. A recent report suggested, that M1-linked ubiquitin chains block A20-

mediated removal of K63-linked ubiquitin chains (Wertz et al., 2015). However, 

because the deubiquitinase activity of A20 is dispensable for the effects observed in 

this study, it is unclear whether another DUB is responsible for the deubiquitination of 

TNFR1-SC components in absence of A20. Concomitant deletion of DUBs like CYLD, 

OTULIN or Cezanne in A20-deficient cells could identify the responsible DUB. Also, 

the experiments performed in this study do not exclude the possibility that TNFR1 is 

partially degraded following its internalisation. Based on this theory, A20 could in fact 

prevent the disintegration of TNFR1-trimer complexes thus stabilising the signalling 

complex and preventing formation of a cell death inducing complex. Surface receptors 

usually undergo degradation or recycling, once the signal has been transmitted 

(Maxfield & McGraw, 2004). Internalisation can be mediated by clathrin-coated-pit 

formation or be independent of it but both pathways lead to formation of sorting 

endosomes. These vesicles can fuse with lysosome, leading to the degradation of 

their content. However, certain receptors like transferrin were reported to exit the 

endosome and be externalised again by the trans-Golgi network (van Dam & 

Stoorvogel, 2002). Hence, it is possible that linear ubiquitin chains represent a sorting 

signal for the late TNFR1-SC. Intriguingly, A20 was shown to localise with lysosomes 

in a ZF7 dependent manner (Li, Hailey et al., 2008). Because A20 is recruited to linear 

ubiquitin chains, an involvement of LUBAC in targeting of the TNFR1-SC to 



4. Discussion 

127 
 

lysosomes is conceivable. These indications warrant a thorough analysis of the 

involvement of LUBAC in receptor trafficking and complex compartmentation. 

 

4.6 Regulation of TNF-induced cell death by LUBAC 

Deficiency in LUBAC sensitises cells to TNF-induced apoptosis and necroptosis 

(Figure 3.26). The reason for this sensitisation is not clear. Deficiency in LUBAC also 

reduces TNF-induced NF-B activation. If insufficient gene activation were the cause 

for the embryonic lethality, one would expect a similar phenotype of HOIP- and e.g. 

NEMO-deficient mice. However, mice lacking HOIP die at E10.5 (Peltzer et al., 2014), 

whereas NEMO-deficient mice die at around E12.5 (Schmidt-Supprian, Bloch et al., 

2000). This suggest that, while LUBAC-certainly impairs NF-B activation, the cause 

for the earlier lethality goes beyond a defect in this pathway. It is important to mention 

that TNF-induced activation of ERK is also impaired in absence of LUBAC ((Peltzer 

et al., 2014)). The contribution of these pathways to the observed phenotype therefore 

still needs to be clarified. In any case, it is apparent that LUBAC-deficiency leads to 

increased sensitivity to cell death induced by TNF- TLR3 and potentially other ligands. 

The phenotype of LUBAC-deficient mice could therefore be explained by exacerbated 

cell death. Conclusively, cFLIP- or Caspase-8-deficiency leads to exacerbated cell 

death. Phenotypically, these mice die at day E10.5 and are characterised by cardiac, 

vascular and haematopoietic defects, similar to HOIP-deficient mice (Varfolomeev et 

al., 1998, Yeh, Itie et al., 2000). Deficiency in LUBAC is thought to destabilise complex 

I thus promoting the formation of a death inducing complex II (Haas et al., 2009). The 

pro-survival function of ubiquitination in TNFR1 signalling is mainly the result of the 

observation that depletion of cIAPs by e.g. SMAC-mimetics leads to a drastic 

reduction in ubiquitination of the TNFR1-SC which coincides with a sensitisation to 

TNF-induced cell death (Silke & Vucic, 2014). Despite the popularity of this theory, 

experimental data characterising the sequential events which lead to complex II 

formation is largely missing. Do complex II components originate from complex I or 

do they assemble from a different cytoplasmic pool which is merely activated by 

complex I components? Peculiarly, the formation of complex II is a rather late event 

following the engagement of TNFR1. Usually, evidence for complex II formation 

following TNF-treatment can be observed after 30 minutes. Considering that most 

gene activation has been triggered after 15 minutes suggests that the TNFR1-SC 

undergoes some major reorganisation, leading to formation of the death inducing 

complex. However, it was never clarified whether the presumed complex II formation 
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is indeed the result of a decomposing complex I. In fact, recent emerging evidence 

suggests that ubiquitination per se may not be as important for the formation of a 

death-inducing complex. Inhibition of TAK1 or IKKs was shown to induce cell death 

by perturbing RIP1 phosphorylation, even when ubiquitination was fully functioning 

and complex stability faultless (Dondelinger et al., 2015). Interestingly, treatment with 

SMAC mimetics has the same effect on the phosphorylation of RIP1. Hence, the 

sensitisation to TNF caused by depletion of cIAPs may in fact be the result of impaired 

RIP1 phosphorylation rather than decreased complex I stability. Importantly, also 

deficiency in Sharpin causes defective RIP1 phosphorylation (Dondelinger et al., 

2015). The function of LUBAC in preventing cell death could therefore be explained 

by at least two mechanisms. (i) linear ubiquitination could indeed enable the 

recruitment of factors which directly or indirectly mediate the phosphorylation of RIP1. 

IKKs were proposed to mediate the death-inhibitory phosphorylation of RIP1 

(Dondelinger et al., 2015). Because the NEMO/IKK complex utilises linear ubiquitin 

for its recruitment, the regulation of RIP1 phosphorylation has to be assumed as 

proposed by Dondelinger et al.. However, this does not answer the question how 

complex II is formed. (ii) On the other hand, linear ubiquitination may prevent 

formation of complex II by retaining e.g. RIP1 in complex I thus preventing formation 

of complex II. More experimental data is required to support this claim as studies 

addressing kinetics of complex I decomposition are missing. To understand this issue, 

the spatiotemporal complex composition of complex I vs II must be monitored by e.g. 

fluorescent microscopy. Electron microscopy showed that the TNFR1-SC is rapidly 

internalised leading to formation of vesicles which originate from the plasma 

membrane (Schneider-Brachert, Tchikov et al., 2004). Hence, compartmentation of 

the TNFR1-SC represents a regulatory mechanism. As LUBAC-deficiency sensitises 

cells to TNF-induced death, it is possible that LUBAC regulates the compartmentation 

of the SC. In a model of Salmonella infection, ubiquitin was found to target invading 

cytoplasmic bacteria for degradation by the autophagosome and lysosomal pathway 

(LaRock, Chaudhary et al., 2015). During this process, the pathogen becomes coated 

with ubiquitin chains by the host ubiquitin system. In this context, LUBAC was found 

to mediate the autophagy of Salmonella and infection-induced gene activation (Fiskin, 

Bionda et al., 2016, van Wijk, Fiskin et al., 2012). These studies also showed that 

ubiquitin is conjugated to endosomes containing invading bacteria. The autophagy 

machinery is specifically recruited by these ubiquitin modifications to the endosomes, 

thus allowing the degradation of the encapsulated bacteria (Fujita, Morita et al., 2013). 

Similarly, LUBAC and linear ubiquitination could promote the engulfment of the 

TNFR1-SC in a secondary vesicle. This might represent an efficient way to prevent 
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further signalling emanating from the engaged receptor signalling complex as the 

additional compartmentation does not allow interaction with cytosolic proteins. This 

could also explain why the death inducing complex was not found to be associated 

with the TNFR1-SC. Signalling events could only take place before the 

compartmentation of the TNFR1-SC is finished, hence failure to enclose the TNFR1-

SC would allow further signalling like e.g. the formation of complex II. In this work, the 

TNFR1-SC was found to become Triton X-100-insoluble over time. It is not clear what 

causes the insolubility, but signalling complex formation is certainly part of the 

explanation, as TNFR1 is easily extractable via TX-100 prior to stimulation. It has 

been reported that high local concentration of the identical protein can trigger 

aggresome formation (Johnston, Ward et al., 1998). These vesicles, which are also 

called inclusion bodies are resistant to most detergents and were found to be 

associated with the microtubule-system (García-Mata, Bebök et al., 1999). It is 

possible that the cell disposes of the large TNFR1-SC in a similar way. Further 

microscopic analysis of the TNFR1-SC is necessary to characterise the fate of this 

signalling complex once it has been triggered. Monitoring membrane and marker 

proteins like the lysosome marker LAMP1 or the endosomal marker Rab7 will help to 

pin-point the location of the TNFR1-SC over time. 

 

4.7 Summary and future directions 

In this work, an intriguing network of LUBAC-regulated ubiquitination/ deubiquitination 

was unravelled. The recruitment principle of CYLD and A20 to signalling complexes 

has been enigmatic for several years. The discovery that LUBAC is essential for their 

recruitment raises exiting new questions. The phenotype of LUBAC deficiency was 

always attributed to the absence of linear ubiquitin chains from the complex, resulting 

in diminished gene activation and reduced complex stability. However, as also DUB 

recruitment is abolished in LUBAC-deficient cells, regulation of other ubiquitin chain 

types is likely to be altered. Hence, the phenotype of LUBAC deficiency might at least 

partially be caused by functional impairment of CYLD and A20 and possibly OTULIN. 

Future research therefore needs to separate the function of linear ubiquitin chains, 

DUB recruitment and individual linear ubiquitin binders. Complete deletion of LUBAC 

can therefore not be more than an initial test for the involvement of M1-chains in each 

pathway. Furthermore, specific alterations, like point mutations in linear ubiquitin 

binding domains, deletion of effectors downstream of LUBAC or mutation of lysine 

residues critical of linear ubiquitination will be essential. It will also be important to see 

which other pathways are effected by LUBAC absence. As basic levels of linear 
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ubiquitination can be observed, a role for LUBAC in cell homeostatic processes like 

DNA-repair, tonic receptor signalling or metabolism is possible. To unravel these 

novel aspects of LUBAC function, an unbiased approach should be taken. The newly 

devised strategy to enrich for proteins that are modified with M1-linkages used in this 

work might prove useful for such an undertaking. The advantage of this ligand- and 

cell-type independent approach is that in principle only proteins which are directly 

modified with linear ubiquitin chains are purified. In contrast to purification of whole 

signalling complex, this might improve the background of non-ubiquitinated proteins 

in a mass spectrometry-based analysis. 

With the increasing evidence for a complex ubiquitin chain architecture (i.e. branched 

chains), novel strategies will be required to analyse the function of the individual 

linkage types. The use of chain type-specific DUBs for in vitro deubiquitination assays 

proved very insightful. However, their application becomes limited in the light of the 

existence of mixed chains, as cleavage of e.g. K63-linked chains might remove 

additional chain types which were attached to it. False negative results may also 

occur if a chain becomes DUB resistant due to branching. Ubiquitin chains should be 

regarded as functional units due to the many potential combinations of branching 

points. New methods should therefore focus on the analysis of a complete and 

unaltered ubiquitin chain ‘tree’, which would provide information on (i) the length of 

each chain type, (ii) the position of each branching point, (iii) the chain type itself, (iv) 

and ubiquitin binders which are associated with these chains. 

In this work, two interesting previously unrecognised LUBAC substrates, TNFR1 and 

TRADD, were identified. The function of linear ubiquitin chains on these proteins 

remains however unanswered. Because HOIP deficiency not only leads to 

disappearance of M1-linked chains on TNFR1 and TRADD but also leads to reduction 

of their overall ubiquitination, a chain protective role of M1-chains can be assumed. 

Again, analysis of the intact chain architecture is likely to shed light on this hypothesis. 

Additionally, linear ubiquitin chains might have an active function by recruiting yet 

unidentified factors. Similar to other receptors like EGFR, the ubiquitination on TNFR1 

might represent a sorting signalling targeting it to e.g. endosomes or lysosomes. It is 

also not clear, whether additional LUBAC targets exist in the TNFR1-SC. But one 

must keep in mind, that these factors could be recruited after the TNFR1-SC was 

partly disassembled and can no longer be retrieved by e.g. TNF-IP. The functional 

role of specific linear ubiquitination events is currently difficult to address. As an initial 

approach, the lysine residue which carries the linear ubiquitin chain can be mutated 

to abolish ubiquitination. However, it is likely that M1-linked ubiquitin chains are 
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conjugated on top of another chain type or vice versa. Hence, even if no linear 

ubiquitination can be detected on a protein after mutation of a lysine, the functional 

impact of mutating this residue could be due to disappearance of other chain types, 

too. A different way to study the function of linear ubiquitin chains might therefore be 

to inhibit the ubiquitin binders recognising these chains. The expression of either a 

dominant negative form or a decoy linear ubiquitin chains might help to understand 

the function of M1 ubiquitin chains more specifically. For that, a complete list of 

possible linear ubiquitin binders is still missing. By using linear ubiquitin as bait, it 

could be possible to enrich for these binders which could be identified by mass 

spectrometry. 

Recent in vivo models addressing the function of LUBAC revealed a strong link 

between linear ubiquitination and the prevention of cell death (Peltzer et al., 2014, 

Rickard et al., 2014a, Zinngrebe, Montinaro et al., 2014). Though it is possible to 

detect increased complex II formation in LUBAC-deficient cells (Figure 3.27), the 

upstream events which lead to this increase are unknown. It is possible that linear 

ubiquitination acts as a stabiliser for complex I thus preventing association of RIP1 

with FADD. However, sufficient experimental evidence for reduced complex I stability 

in absence of LUBAC is missing. Further experiments are therefore required to 

monitor the dissociation of receptor components from TNFR1. Of special interest is 

the fate of RIP1 as it is regarded as the main driver of TNF-induced cell death. 

Likewise, it is not clear how the transition of SC-components from complex I to 

complex II is regulated. What prevents RIP1 from engaging with FADD already at the 

TNFR1-SC? Is the dissociation of RIP1 from complex I altered in death-inducing 

conditions? Can RIP1 molecules which were not initially recruited to the TNFR1-SC 

engage in complex II formation? These seemingly basic questions are still waiting to 

be answered and it is very likely that LUBAC regulates at least some of these aspects. 
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5 Appendix 

 

5.1 Abbreviations 

A   Alanine 

aa   Aminoacid 

ABIN   A20 binding inhibitor of NF-B 

AP   Affinity purification 

Apaf-1   Apoptotic protease-activating factor 1 

APC   Antigen presenting cells 

APC/C   Anaphase-promoting complex 

ATG   Autophagy related gene 

ATP   Adenosin triphosphate 

BAX   Bcl2-associated X protein 

BAX   Bcl2-associated X protein 

Bbox   B-box-type zinc finger domain 

BCA   Bicinchoninic acid 

Bcl-2   B-cell lymphoma 2 

BID   BH3-interacting domain death agonist 

BIR   Baculoviral IAP repeat 

bp   Base pair 

BRCA   Breast cancer 

C   Cysteine 

CAD   Caspase-Activated DNase 

CAP   Cytoskeleton-associated protein 

CARD   Caspase activation and recruitment domains 
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CBM   CARD11-BCL10-MALT1 

Cezanne  Cellular Zn finger anti-NF-B 

cFLIP   Cellular FLICE-inhibitory protein 

CG   CAP-Gly 

cIAP   Cellular inhibitor of apoptosis protein 

CLR   C-type lectin receptors 

Cpdm   Chronic proliferative dermatitis 

C-terminus  Carboxy-terminus 

CYLD   Familial Cylindromatosis Protein 

Da   Dalton 

DAMP   Damage-associated molecular pattern 

DD   Death domain 

DED   Death effector domain 

DISC   Death inducing signalling complex 

DMEM   Dulbecco’s modified Eagle’s medium 

DNP-KLH  Dinitrophenol- Keyhole limpet hemocyanin 

DTT   Dithiothreitol 

DUB   Deubiquitinases 

E   Glutamic acid 

e.g.   For example, (lat: exemplī grātiā) 

EGF   Epidermal growth factor 

ERK   Extracellular signal regulated kinase 

ESCRT  Endosomal-sorting complexes required for transport 

FACS   Fluorescence-activated cell sorting 

https://en.wiktionary.org/wiki/exempli_gratia#Latin
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FADD   Fas-associated protein with a death domain  

FCS   Fetal calf serum 

G   Glycine  

GalN   D-galactosamine N 

GFP   Green fluorescent protein 

Gly   Glycine 

GST   Glutathione S-transferase 

H   Histidine  

HECT   Homologous with E6-`associated protein C-Terminus 

HEK   Human embryonic kidney  

HOIL-1   Heme-oxidized IRP2 ubiquitin ligase 1 

HOIP   HOIL-1-interacting protein  

HRP   Horseradish-peroxidase 

i.e.   That is (lat:id est) 

IBR   In-between-RING 

ICAD   Inhibitor of caspase-activated DNase 

IgG   Immunoglobulin G 

IKK   Inhibitor of B kinase 

IL   Interleukin 

INF   Interferon 

IP   Immunoprecipitation 

IPTG   Isopropyl--D-thio-galactoside  

ITCH   Itchy E3 Ubiquitin Protein Ligase 

IB   Inhibitor of B  
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JAMM   JAB1/MPN/Mov34 metalloenzyme 

JNK   c-Jun N-terminal kinase  

K   Lysine  

K63-AP  K63-ubiquitin chain-affinity purification 

kDa   Kilo Dalton 

KO   Knockout 

L   Leucine  

LDD   Linear ubiquitin chain determining domain 

LDS   lithium dodecyl sulfate 

LPS   Lipopolysaccharide  

LRR   Leucine-rich repeat 

LT   Lymphotoxin 

LUBAC  Linear ubiquitin chain assembly complex  

M   Methionine  

M1-AP   M1-ubiquitin chain-affinity purification 

MAP2K  Mitogen-activated protein kinase kinase 

MAP3K  Mitogen-activated protein kinase kinase kinase 

MAPK   Mitogen-activated protein kinase  

MAPKAPK  MAP Kinase Activated Protein Kinase 

MDP   Muramyl dipeptide 

MEFs   Mouse embryonic fibroblasts  

MEKK   MAPK/ERK kinase kinase 

MJD   Machado-Josephin disease proteases 

MLKL   Mixed lineage kinase like 
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MNK   MAPK-interacting kinases 

MOMP   Mitochondrial outer membrane permeabilisation 

MS   Mass spectrometry  

MVB   Multivesicular body 

N   Asparagine  

NEMO   NF-B essential modulator  

NF-B   Nuclear factor-B  

NIK   NF-B inducing kinase 

NK-cell   Natural killer cell 

NLR   NOD-like receptor  

NLS   Nuclear localisation sequence  

NMR   Nuclear magnetic resonance spectroscopy 

NOD   Nucleotide-binding Oligomerisation Domain  

N-terminus  Amino-terminus 

NZF   Npl4-type zinc finger  

OTU   Ovarian Tumour 

OTULIN  OTU Deubiquitinase With Linear Linkage Specificity 

PAMP   Pathogen associated molecular pattern  

PARP   Poly (ADP-ribose) polymerase 

PBS   Phosphate-buffered saline 

PCR   Polymerase chain reaction 

PEI   Polyethylenimine 

PIM   PUB interacting motif 

PtdSer   Phosphatidylserine 
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PUB   PNGase/ubiquitin-associated 

R   Arginine 

Raf-1   Rapidly accelerated fibrosarcoma 1 

RANK   Receptor activator of NF-B 

RBCK1  RBCC protein interacting with PKC 1  

RBR   RING-IBR-RING  

RHD   Rel homology domain  

RHIM   RIP homotypic interaction motif 

RIG-I   Retinoic acid-inducible gene I  

RING   Really Interesting New Gene  

RIP1   Receptor interacting protein 

RLR   RIG-I-like receptors 

RNA   Ribonucleic acid 

RNAi   Ribonucleic acid interference 

RNF   RING finger protein 

ROS   Reactive oxygen species  

RPMI   Roswell Park Memorial Institute medium 

S   Serine 

SC   Signalling complex  

SCF   Skp1/Cullin/F-box 

SDS   Sodium dodecyl sulfate 

SEM   Standard error of the mean 

SHANK  SH3 and multiple ankyrin repeat domains protein 

Sharpin  SHANK associated RH domain protein 
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shRNA   short hairpin RNA 

siRNA   Small interfering RNA 

SM   Smac mimetics 

Smac   Second mitochondria-derived activator of caspase 

SPATA2  Spermatogenesis-associated protein 2 

SUMO   Small ubiquitin-related modifier 

T   Threonine  

TAB   TAK1 binding protein  

TAD   Transcriptional activator domain 

TAK1   TGF--activated kinase 1  

TAP   Tandem affinity purification 

TGFβ   Transforming growth factor β 

TLR   Toll-like receptor  

TNF   Tumour necrosis factor 

TNFAIP3  TNF Alpha Induced Protein 3 

TNFR1   TNF receptor 1 

TNFR1-SC  TNFR1-signalling complex 

TPL-2   Tumor progression locus 2 

TRADD  TNFR1-associated death domain  

TRAF   TNF-receptor associated factor  

TRAIL   TNF-related apoptosis-inducing ligand 

TRIF   TIR domain-containing adapter protein inducing IFN-beta 

TRIM   Tripartite motif-containing protein 

TX-100  Triton X-100 
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UBA   Ubiquitin-associated 

UBAN   Ubiquitin-binding domains found in ABINs and NEMO 

Ubc   Ubiquitin conjugating 

UBD   Ubiquitin-binding domain 

UBE   Ubiquitin-conjugating enzyme 

Ubi-AP   Ubiquitin-affinity purification 

UBL   Ubiquitin-like  

UCH   Ubiquitin carboxyl-terminal hydrolase isozyme 

UIM   Ubiquitin-interacting motif  

USP   Ubiquitin-specific protease 

v/v   Volume/volume 

vOTU   Viral OTU 

w/v   Weight/volume 

WT   Wild-type  

XIAP   X-linked inhibitor of apoptosis  

ZBP1   Z-DNA-binding protein 1 

ZF   Zinc finger 
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